

교통사고에 따른 사회적 비용 감축을 위한 과제

이슈 분석

천지연 연구위원

약 요


국내 도로 교통사고 비용은 국내총생산의 1.2%로 상당 수준의 사회적 비용이 교통사고로부터 야기되고 있으며, 교통사고당 비용은 증가하고 있는 것으로 나타남. 이 중 보험행정 비용은 5%로 사회기관 비용 의 대부분을 차지하고 있음. 교통사고에 따른 사회적 비용 감축을 위해서는 사고 자체의 감소뿐 아니라 사고 발생 시 처리 비용 감축을 위한 노력이 필요함. 보험회사는 보험청구의 디지털화를 통해 청구 절차 를 자동화 및 간소화하고, 정부는 사고 데이터 기록 및 공유를 위한 법안 마련을 고려할 필요가 있음

- 2022년 국내 도로 교통사고 비용은 약 26.3조 원으로 국내총생산의 1.2% 수준의 사회적 비용이 교통사고로부 터 야기되고 있으며, 교통사고당 비용은 증가하고 있는 것으로 판단됨
 - 국가별 GDP 대비 교통사고 비용 비중은 미국이 2.1%로 가장 높은 수준으로 보이고 있으나, 국내의 경우도 독일, 영국, 일본 등의 주요국과 비교해 높은 수준을 보이고 있음
 - 자동차 보험회사의 손해액은 2022년 14.1조 원으로 지난 10년간 연간 5% 수준으로 꾸준히 증가하고 있으나 사고 자체는 줄어든 것으로 나타남
 - 손해액을 대물 및 대인으로 나누어 살펴보면 대물(대물배상, 자기차량손해 등)의 경우 8.2조 원, 대인(대인배상, 상해. 자손자기신체사고 등)의 경우 5.9조 원으로 2012년 대비 연평균 4.6% 및 4.9% 수준으로 꾸준히 증가 하고 있음
 - 다만, 보험회사 전손 및 도난, 분손 건수는 2012년 487만 건에서 2022년 440만 건으로 줄어든바, 사고당 비용 이 증가한 것으로 나타남
 - 도로교통공단 통계 기준 교통사고 전체 건수도 2012년 22.4만 건에서 2022년 19.7만 건으로, 같은 기간 자동 차 1만 대당 사고 건수도 99건에서 67.2건으로 크게 감소함
 - 같은 기간 물가상승률은 연평균 약 1.6%로 물가상승률을 고려해도 사고당 비용이 증가하고 있는 것으로 보임

〈그림 1〉 국가별 GDP 대비 교통사고 비용 비중

〈그림 2〉 보험회사의 자동차보험 손해액 추이

(단위: 조 원)

자료: 보험개발원 보험통계조회서비스

주: 한국, 영국은 2022년, 독일, 미국은 2021년, 네덜란드, 일본, 호주는 2020년 기준임. 미국은 NHTSA(2019) 기준으로는 1.42%로 나타남

자료: 도로교통공단, "2022년 도로 교통사고 비용의 추계와 평가"

- 도로 교통사고 비용은 물적피해, 인적피해, 사회기관 비용으로 나뉘어 산출되며, 보험행정 비용은 약 5%로 사회 기관 비용의 대부분을 차지하고 있음
 - 2022년 사고 비용을 피해종별로 나누어 살펴보면 물적피해, 인적피해 및 사회기관 비용이 각각 45.6%, 48.0% 및 6.5%를 차지하고 있음
 - 특히, 사회기관 비용 중 보험행정 비용은 2018년 1.1조 원에서 2022년 1.3조 원으로 연평균 3.4% 수준으로 증가 하여, 같은 기간 비중이 4.6%에서 5%로 다소 증가됨
 - 보험행정비용은 보험금 청구 처리를 위한 사고 조사 및 피해자와의 화해. 소송 등을 수행하면서 발생되는 비용 등을 포함하는 것으로 사고로 인한 직접적 대물 및 인적 피해 금액 이외의 행정적 비용을 추정한 수치임
 - 우리나라의 경우 손해보험회사의 자동차사고 보상 단순물적피해 1건당 평균처리시간을 1로 보고, 사망, 중상, 경 상 및 부상신고 등 피해종별 상대적 처리시간을 조사한 후 자동차보험업계의 교통사고 처리 요원의 근무시간 비 율을 적용하여 비용을 추정함

〈표 1〉 피해종별 도로 교통사고 비용 추이

(단위: 조 원, %)

					(, ,
구분	2018	2019	2020	2021	2022
총비용	25.1	26.0	26.1	27.0	26.3
	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)
물적피해	11.1	11.1	11.0	11.2	12.0
	(44.2)	(42.8)	(42.2)	(41.3)	(45.6)
인적피해	12.5	13.3	13.4	14.1	12.6
	(49.8)	(51.2)	(51.5)	(52.2)	(48.0)
사회기관 비용	1.5	1.6	1.6	1.7	1.7
	(6.1)	(6.0)	(6.3)	(6.5)	(6.5)
- 보험행정	1.1	1.2	1.3	1.4	1.3
	(4.6)	(4.5)	(4.8)	(5.0)	(5.0)

자료: 도로교통공단

- 교통사고에 따른 사회적 비용 감축을 위해서는 사고 자체의 감소뿐 아니라 사고 발생 시 처리 비용 감축을 위한 노력이 필요할 것으로 보임
 - 교통사고 감소를 위한 논의는 지속되고 있으나¹⁾ 사고조사 및 처리 절차에 따른 비용 감축에 대한 논의는 다소 부족 한 것으로 보임
 - 여기서는 교통사고 비용 중 사회기관 비용의 대부분을 차지하고 있는 보험행정 비용 감축을 위한 보험회사 및 정부 의 과제를 중심으로 논의해 보고자 함
- 보험회사는 교통사고 시 사고 조사 및 보험 청구 절차의 디지털화 등을 통한 자동화 및 간소화를 통해 손해배상 대행 및 행정 처리 비용을 감축할 수 있는 방안을 고려해 볼 수 있음
 - 중국 평안(Ping An)보험은 자동차 사고 시 초기 보고, 사고 사진 등을 자체 어플리케이션으로 제출하고 이를 AI로 분석하여 손해평가 및 문서 처리 등의 자동화를 통한 보험 청구 절차 간소화로 비용을 절감하고 있음
 - 스마트 자동차 청구 절차(Smart Auto Claim Solution)를 통해 자동차 사고의 95.5%를 5~10분 내에 적시에 조사하고, 이 중 30%는 AI 이미지 인식 기술로 손해평가를 완료하며 정확도는 95%에 달하는 것으로 보고함?)
 - 자동차보험 이외의 보험에서도 증권발행, 청구자료 수집, 책임 및 손해평가에서의 수작업을 디지털화하여 약 152 만 시간을 절약하였으며 정확도는 98%에 달하는 것으로 알려짐3)
 - 미국의 메트로마일(Metromile) 보험회사는 머신러닝(machine learning) 기법을 통해 보험 청구의 10%를 차지하 는 보험사기를 신속하게 찾아내어 이를 수동으로 확인하는 시간을 크게 감축4)하였음
 - 스위스 리(Swiss Re)는 자동차 보험청구에 AI 이미지 분석을 도입하기 위해 평안보험의 계열사인 OneConnect Financial Technology와 협력을 도모함5)
 - 최근 국내 주요 보험사들도 설계, 상담뿐 아니라 보험 사기 적발 등에 AI 활용을 확대하기 위한 다양한 시도를 하고 있음
- 정부는 정확한 사고 조사 및 보험 청구 절차의 디지털화 등을 확대하기 위해 사고 데이터를 기록하고 관련 데이 터를 사고처리 관련 기관과 공유할 수 있는 법안을 마련할 필요가 있음
 - 사고기록의 정확성을 높이기 위해 자동차 사고기록장치(Event Data Recorder; EDR) 기록에 대한 규제를 점검 및 강화할 필요가 있음
 - 자동차 사고기록장치란 자동차 사고 전·후의 자동차 속도, 제동페달, 가속페달 등 자동차 운행 정보를 저장하고 그 정보를 제공하는 장치로 사고 원인을 규명하기 위해 필요한 항목을 기록함

¹⁾ 기승도(2023. 4), 「사고감소를 위한 자동차보험제도」, 『KIRI리포트』, 보험연구원

²⁾ Ping An Group(2019. 1. 25), "Ping An Unveils Credit Based Smart Auto Claim Solution"

^{3) 2021} Annual Report, Ping An Insurance (Group) company of China, Ltd.

⁴⁾ PR Newswire(2018. 6), "Metromile Leverages Artificial Intelligence And Sensor Data From Low-Impact Car Crashes To Tackle Insurance Fraud"

⁵⁾ Swiss Re(2020. 8), "Swiss Re and Ping An's OneConnect partner to offer Al and cloud-based solutions for European Motor Claims"

- 2023년 12월 자동차 사고기록장치 기록 항목이 45개에서 67개로 확대되는 등 자동차 사고분석의 신뢰도 제고 및 안전성 강화를 위한 입법 예고가 있었으나 주요국과 비교 시 보다 강화할 여지가 있는 것으로 보임이
- 또한, 자율주행차의 사고분석을 명확히 하기 위해서는 일반 자동차보다 긴 시간의 사고기록이 필요할 수 있으므 로⁷⁾ 자율주행차에 대한 구별된 규정 마련을 검토할 필요가 있음
- 자율주행차의 경우 데이터 부재 시 사고 규명이 어려워 사고 조사 및 분석을 위해서는 데이터 접근이 필수적임
 - 미국의 2018년 Uber의 자율주행 테스트 차량 사고의 경우 국가교통안전위원회(National Transportation Safety Board)의 요구로 사고 조시를 위해 당사가 가지고 있는 모든 전자 데이터 및 녹화 영상을 공유할 것을 요구하였음⁸⁾
 - 현재 우리나라의 경우 자율주행자동차 사고조사위원회 구성·운영 등에 관한 규정에 따라 사고조사위원회가 자율 주행차 사고를 조사하고 이후 피해자. 제작자, 보험회사 등의 관계자들은 사고 조사 결과와 관련된 정보 제공을 요구할 수 있음
- 향후, 커넥티드카, 자율주행차 등 다양한 차량 데이터의 수집이 가능한 차량이 점차 증가할 것으로 예상되는바. 정 확한 교통사고 분석을 위해 관계기관과 데이터 공유가 가능하도록 하는 법안을 마련할 필요가 있음
 - 자율주행차량의 경우 자율주행 기록장치(Data Storage System for Automated Driving; DSSAD) 데이터는 자율주행시스템과 사람 운전자 간 교통사고 원인을 제공한 책임을 규명하는 데 쓰일 수 있음
 - 아이오이닛세이 동화손해보험은 주차장에서 서로가 움직이고 있다고 주장하는 차량 간 접촉사고에서 고객의 커넥 티드카로부터 얻은 주행데이터에 의해 브레이크를 밟아 정지하고 있던 것을 확인하여 조기에 문제를 해결할 수 있었음9)
 - 차량 사고에 대한 과실 판단이 어려운 경우 관계자들의 다양한 차량데이터에 대한 접근10)이 가능하도록 하면 용 이한 사고분석이 가능해질 것이라 판단됨

⁶⁾ 미국과 EU 모두 모든 신차에 EDR 장착을 의무화하였고, EU는 사고 5초 전과 사고 후 0.3초 간격으로 정보를 저장하도록 하고 있으며, 미국은 사고 20초 전과 사고 후 0.1초 간격으로 정보를 저장하도록 하고 있음. 한편, 국내는 사고 5초 전과 사고 후 0.3초 간격의 정보를 저장하고 있음(자동차규칙, 별표 5의 25)

⁷⁾ Gwehenberger et al.(2019)에서는 자율주행차의 경우 사고분석에 필요한 EDR 기록 시간을 충돌사고 30초 전과 사고 후 10초로 제안하 고 있음

⁸⁾ Winter et al.(2019), "Will vehicle data be shared to address the how, where, and who of traffic accidents?"

⁹⁾ タフ・クルマの保険 パンフレット, あいおいニッセイ同和損保(2024. 1)

¹⁰⁾ 테슬라의 경우 속도, 가/감속, 위치 등 주행 정보 및 차량 상태에 대한 다양한 정보를 통해 사고 원인을 분석하여 차량을 업데이트하는 것으로 보고됨(Winter et al. 2019)