Extreme data breach losses: An alternative approach to estimating probable maximum loss for data breach risk

개인정보 유출 리스크로 인한 최대가능 손실 추정모형

발표자: 정 광 민

포스텍 산업경영공학과 / 드레이크 대학교 경영대학 (겸직)

보험연구원 산학세미나 / 2020년 8월 21일

Status-quo of the cyber-insurance market

• Market growth: 37% per annum between 2016 and 2017 (11% over 2019)

Status-quo

- Global premium volume (2018): \$ 4.9bn (\$ 2,373 bn of total non-life premium globally)
- 80% of the premium volume from the U.S. and the rest from Europe and Asia.
- 528 cyber-insurers in the U.S. in 2018 (6,000 insurers in total in the U.S.)

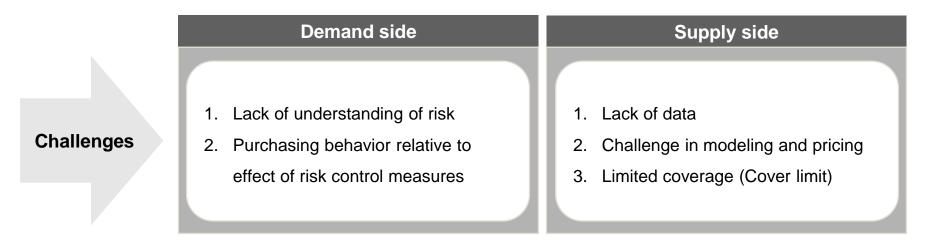
Korean market

- Market size: ₩ 32.2 bn in 2016 (₩ 84.5 tn of total non-life premium in 2016)
- Coverage is highly limited compared to those in the U.S. market.
- Big players are present in the market (Samsung, KB, Hyundai Marine, DB, AIG, Meritz).

Source: "Cyber Overview", Munich Re "sigma 03/2019", Swiss Re "Ten key questions on cyber risk and cyber risk insurance", Eling and Schnell (2017) with Geneva Association "Content analysis of cyber insurance policies: How do carriers write policies and price cyber risk?", Romanosky et al. (2017) "전자금융과 금융보안 제 19호", 금융보안원 (2020)

3

Challenges of the cyber-insurance market



사이버 보험 시장이 활성화되지 않는 원인

사이버보험 시장이 활성화되지 않는 원인	1순위	2순위	3순위	합계
1) 기업의 실질적인 잠재 리스크는 작아서 보험 수요가 낮음	19.2%	6.1%	7.1%	32.4%
2) 사이버보험에 가입해도 사이버보험이 기업의 니즈를 충족시키지 못함	18.2%	17.2%	20.2%	55.6%
3) 까다로운 가입조건과 가입절차로 인해 가입 니즈를 저해함	1.0%	4.0%	2.0%	7.0%
4) 사이버보험 가입 시 얻는 혜택이 낮아서 보험 수요가 낮음	4.0%	26.3%	9.1%	39.4%
5) 사고발생 시 보장에 대한 확신이 없어서 보험 수요가 낮음	30.3%	14.1%	16.2%	60.6%
6) 가입하고 싶은 사이버보험 상품이 없어서 보험 수요가 낮음	0%	6.1%	7.1%	13.2%
7) 상품 개발에 필요한 전문 인력이 없어서 다양한 상품이 부족함	6.1%	6.1%	13.1%	25.3%
8) 정부의 적극적인 시장 육성 의지가 없음	6.1%	9.1%	14.1%	29.3%
9) 기타	7.1%	1.0%	0%	8.1%
무응답	8.1%	10.1%	11.1%	29.3%

개인정보 배상책임보험 최저가입금액 기준

적용대상 사업자의	적용대상 사업자의 가입금액 산정요소					
이용자수	매출액	(최소적립금액)				
	800억원 초과	10억원				
100만명 이상	50억원 초과 800억원 이하	5억원				
	5천만원 이상 50억원 이하	2억원				
	800억원 초과	5억원				
10만명 이상 100만명 미만	50억원 초과 800억원 이하	2억원				
	5천만원 이상 50억원 이하	1억원				
	800억원 초과	2억원				
1천명 이상 10만명 미만	50억원 초과 800억원 이하	1억원				
	5천만원 이상 50억원 이하	5천만원				

Motivation of the Study (1 / 4)

Extreme data breach events

회원 여러분의 개인정 심려를 끼치게 된 점 진심

고객 여러분께 알려드립니다.

NATE 📦 네이트 / 짜이월드 공지사항

당사에서는 내부 모니터림을 통해 고객의 일부 정보가 7월 26일 해킹에 의해 유출된 사실을 범인 검거를 위해 <u>수사기관 및 관계기관에 즉시 조사를 의뢰</u>하였음을 알려드립니다.

해킹으로 인해 고객 여러분의 개인정보가 유출되어 심려를 끼치게 된 점 진심으로 사과 드립

현재까지 파악된 바는 유출된 개인정보는 <u>아이디, 이름, 핸드폰번호, 이메일주소, 암호화된</u> 최고 수준의 기술로 암호화되어 있어 안전합니다.

이는 중국발 IP으로부터의 악성코드를 통해 해킹된 것으로 추정하고 있으며 자세한 상황은 고객 여러분의 서비스 사용에서는 아무런 문제가 없습니다만, 보이스 피싱 및 스팸메일 예빙

고객정보 유출에 따른 인국내신용·체크카드정보유출...1.5 테라바이트분량

저희 KB국민카드는 고객님의 정보를 안전하게 보호하고자 최선의 노력을 (수사결과 발표(2014.1.8. 14:00) 내용과 같이 당 사가 보유하고 있는 고객정 이에 대하여 진심으로 사과를 드립니다.

이번 사고는 2013년 상반기 중 당사의 '카드부정 사용방지시스템(FDS) Up 도입' 프로젝트를 진행하는 과정에서 외부 신용정 보회사 개발담당 총괄책임 으로 반출함으로써 발생하게 된 사건입니다.

유출된 정보에는 고객의 성명, 휴대전화번호, 직정/명, 주소 및 일부 신용정5 조정되고 있습니다.

지까지는 고객님의 정보가 포함되었는지 여부와 포함되었다면 어떤 정보 특히 일 수 없는 상황이라 수사기관과 협조하여 최대한 배른 시일 내에 정 최선의 노력을 다하고, 유출된 정보의 정확한 범위와 내용이 확당

지하도록 하겠습니다. 지하도록 하겠습니다.)수사 결과에 따르면 현재 개인정보 유출 혐의자 '개인정보는 판매나 유통·되지 않은 것으로 부 시기 등에 유의하여 주시 기를 바랍니다.

인터넷 망분

피의자 이씨, 2014년에도 유사한 범죄로 처벌받아

입력 2020-06-14 23:11 수정 2020-06-14 23:24

Frequency trend

Trends of data breach loss frequency and severity (2005 – 2018)

Trend of Frequency between 2005 and 2018 trend 3.0e+09 200 Heavier losses occurred more frequently over last three years 150 2.0e+09 Rate of Events Breach Size 100 1.0e+09 50 0.0e+00 0 2005 2010 2015 2005 2010 2015 Time(Days) Time(Days)

Severity trend

Literature review on extreme data breach/cyber loss estimation

Probabilistic model: The evaluation of the loss process

	Maillart & Sornette (2010)	Edwards, Hofmeyr & Forrest (2016)	Wheatley, Maillart & Sornette (2016)	Eling & Jung (2018)	Eling & Wirfs (2019)	Hofmann, Wheatley & Sornette (2020)
Data period	2000-2008 (breach loss)	2005-2015 (breach loss)	2007-2015 (breach loss)	2005-2016 (breach loss)	1995-2014 (monetary loss)	2007-2017 (breach loss)
Methodology	Threshold- based (power- law distribution)	Lognormal	Threshold- based (double- truncated Pareto)	Lognormal & threshold- based with dependence modeling	Threshold- based (Pareto distribution)	Threshold- based (truncated Pareto)
Estimate of maximum loss	NA	130 million (300 million	1.1 billion (99.5%)	NA	NA
		Drogon kir	\mathbf{I}	imation		
		•	ng beyond the est te and Ouillon, 20			

(Somelie and Oullion, 2012)

List of extreme data breach losses (2005 – 2018)

Date	Breached entity	Risk type	Industry	Breach records
				(million)
Dec 14, 2016	Yahoo	HACK	Business	3,000.0
Mar 8, 2017	Multiple entities	DISC	Business	1,370.0
Aug 5, 2014	Multiple entities	HACK	Business	1,000.0
Sep 22, 2016	Yahoo	HACK	Business	500.0
Nov 16, 2016	FriendFinder	HACK	Business	412.0
May 31, 2016	MySpace	HACK	Business	360.0
Jul 3, 2018	Exactis	DISC	Business	340.0
Nov 30, 2018	Marriott International	HACK	Business	327.0
Apr 2, 2011	Epsilon	HACK	Business	250.0
Jun 19, 2017	DeepRootAnalytics	DISC	Business	198.0
Dec 28, 2015	Multiple entities	DISC	Business	191.0
Jun 6, 2012	LinkedIn	HACK	Business	167.0
Mar 30, 2018	Under Armour	HACK	Business	150.0
Sep 7, 2017	Equifax	HACK	Financial service	145.5
May 21, 2014	Ebay	HACK	Business	145.0
Jan 20, 2009	Multiple entities	HACK	Financial service	130.0
Jun 27, 2018	NameTests	DISC	Business	120.0
May 17, 2016	LinkedIn	HACK	Business	117.0
Oct 11, 2018	MindBody - FitMetrix	DISC	Business	113.5
Apr 27, 2011	Sony	HACK	Business	101.6

Research questions

8

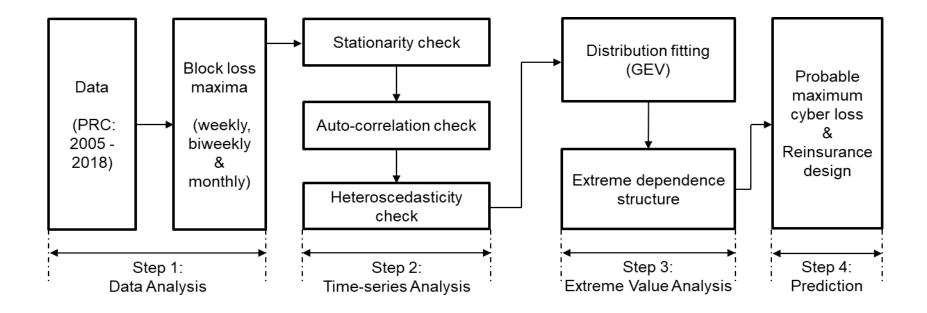
- Can one statistically estimate the size of dragon king by data breach risk?
- If one can estimate the size of dragon king, how can she **apply this to the current insurance market** and what could be a **solution to manage a catastrophe data breach loss**?

Contributions

- An alternative approach to modeling extreme cyber loss
- A definition of probable maximum loss for data breach risk
- An empirical benchmark on reinsurance with public-private partnership (PPP)

9

Overview of modeling



Privacy Rights Clearinghouse (PRC)

- Non-profit corporation compiling "chronology of data breaches" in the U.S. from 2005 onwards (9,002 losses as of Jan 31, 2019) -> the largest public database for data breach losses
- Updating day-by-day based on reports from a government agency or verifiable media source
- Date made public, Company, Industry, Breach type, Location and Total breach records.

	А	В	С	D	E	F	G	Н	I	J	К	L	М
1	Date Made Public	Company	City	State	Type of breach	Type of organization	Total Records	Description	Informatior	Source UR	Year of Breach	Latitude	Longitude
2	21-Oct-09	Bullitt Cour	Shepherds	Kentucky	DISC	EDU	676	A Bullitt	Dataloss D	В	2009	37.9884	-85.7158
3	21-Oct-09	Roane Sta	Harriman	Tennessee	PORT	EDU	14,783	Roane	Dataloss D	В	2009	35.93396	-84.5524
4	15-Oct-09	Halifax Hea	Daytona B	Florida	PORT	MED	33,000	A laptop	Dataloss D	В	2009	29.21082	-81.0228
5	04-Oct-09	Suffolk Cor	Selden	New York	DISC	EDU	300	Suffolk	Dataloss D	В	2009	40.86649	-73.0357
6	28-Sep-09	Penrose H	Colorado S	Colorado	PHYS	MED	175	Officials at	Dataloss D	В	2009	38.83388	-104.821
7	23-Sep-09	Eastern Ke	Richmond	Kentucky	DISC	EDU	5,045	The	Dataloss D	В	2009	37.74786	-84.2947
8	22-Sep-09	Bernard Ma	Dallas	Texas	PORT	BSF	2,246	More than	Dataloss D	В	2009	32.80296	-96.7699
9	22-Sep-09	Sagebrush	Bakersfield	California	PHYS	MED	31,000	Thousand	Dataloss D	В	2009	35.37329	-119.019
10	21-Sep-09	Rocky Mou	Pinedale	Wyoming	DISC	BSF	1,325	Α	Dataloss D	В	2009	42.86661	-109.861
11	14-Sep-09	University (Gainesville	Florida	DISC	EDU	25	In August,	Dataloss D	В	2009	29.65163	-82.3248
12	14-Sep-09	Jones Gen	Boulder	Colorado	PHYS	BSR	0	Boulder	Dataloss D	В	2009	40.01499	-105.271
13	02-Sep-09	Bluegrass	Danville	Kentucky	UNKN	EDU	190	A file	Dataloss D	В	2009	37.64563	-84.7722
14	02-Sep-09	Naval Hosp	Pensacola	Florida	PORT	MED	38,000	Naval	Dataloss D	В	2009	30.42131	-87.2169
15	21-Aug-09	University (Amherst	Massachu	HACK	EDU	0	Nearly a	Dataloss D	В	2009	42.38037	-72.5231
16	15-Aug-09	Northern K	Highland H	Kentucky	PORT	EDU	200	Α	Dataloss D	В	2009	39.03312	-84.4519
17	14-Aug-09	Calhoun Ar	Battle Cree	Michigan	DISC	EDU	455	Personal	Dataloss D	В	2009	42.32115	-85.1797
18	03-Aug-09	National Fi	Washingto	District Of	DISC	GOV	27,000	An	Media		2009	38.89511	-77.0364
19	22-Jul-09	A Honolulu	Honolulu	Hawaii	INSD	MED	0	In June	Media		2009	21.30694	-157.858
20	14-Jul-09	Canyons S	Cottonwoo	Utah	PORT	EDU	6,000	Canyons	Dataloss D	В	2009	40.61967	-111.81
21	14-Jul-09	Leander So	Leander	Texas	UNKN	EDU	0	School	Media		2009	30.57881	-97.8531
22	09-Jul-09	Mountain N	Salt Lake	Utah	PHYS	MED	0	Names,	Media		2009	40.76078	-111.891
23	08-Jul-09	AT&T	Chicago	Illinois	INSD	BSO	2,100	A	Dataloss D	В	2009	41.85003	-87.6501
24	24-Jun-09	Florida Dej	Tallahasse	Florida	PORT	GOV	2,828	The	Dataloss D	В	2009	30.43826	-84.2807
25	24-Jun-09	Battle Cree	Battle Cree	Michigan	DISC	GOV	65	Some	Media		2009	42.32115	-85.1797

Data in this study

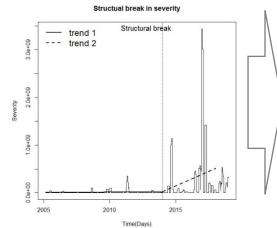
Period: Jan 1st, 2005 – Dec 31st, 2018

of obs: 6,780 in total without zero-values

Risk classification (Edwards et al., 2016):

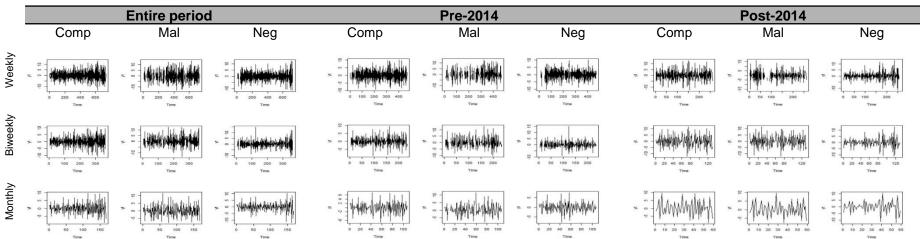
Risk type	Variable	Explanation
Malicious	Hacking (HACK)	Hacking attack by outsiders or infection by malware
	Insider (INSD)	Breached by an insider (e.g., employee or contractor)
	Payment card fraud (CARD)	Fraud involving debit and credit cards
Negligent	Portable device (PORT)	Lost, discarded or stolen portable devices
	Stationary device (STAT)	Lost stationary computers
	Unintended disclosure (DISC)	Privacy information disclosed unintentionally
	Physical loss (PHYS)	Lost, discarded or stolen non-electronic information

A break in loss severity



			Test		Trer	nd
	Structural	OLS-	Rec-			
	break	CUSUM	CUSUM	Chow	Intercept	Slope
Severity	Jan, 2014	5.890***	3.851***	73.059***	1: -42m	1: 3,888
	,				2: -1.9b	2: 0.1m
				7		

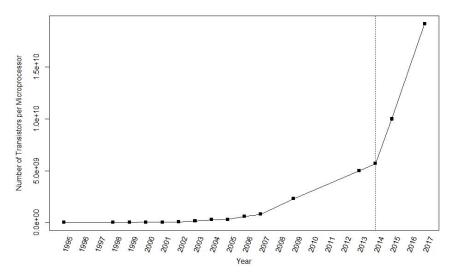
Split the dataset into two periods: pre-2014 and post-2014



¹³ Empirical Estimation (2 / 4)

A break in loss severity: What could have driven it?

- 1. State-level acts of data breach notification?
 - Five states have enacted this law since 2014.
 - Borderless businesses in different states, where this law gets more effective.
- 2. Significant advance in the information technology?
 - 10 out of 15 most extreme loss events from fully online-based corporations since 2014 (62.5% of the total breached records)
 - Moore's law?

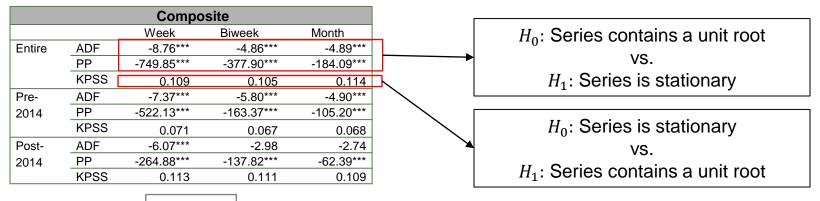


Plot to display the Moore's law

 \rightarrow The y-axis indicates the number of transistors per microprocessor, which shows a clear distinction at the time point of 2014 for the data period since 2005.

Time series analysis on data breach loss maxima

Testing stationarity



Testing temporal dependency

Entire period									
Data	Block	Model	AIC	BIC	AICc				
Composite	Week	AR(12)	9086.33	9150.65	9086.84				
	Biweek	AR(6)	4797.92	4829.14	4798.23				
	Month	AR(3)	2328.69	2344.31	2328.94				
Malicious	Week	AR(4)	9094.00	9121.57	9094.08				
	Biweek	AR(2)	4806.25	4821.86	4806.32				
	Month	AR(0)	2336.41	2342.66	2336.44				
Negligent	Week	AR(0)	7887.98	7897.17	7887.99				
	Biweek	AR(0)	4202.95	4210.76	4202.96				
	Month	AR(0)	2060.41	2066.66	2060.44				

Testing heteroscedasticity

	Entire period									
			Composite		Malic	ious				
# Lag	S	Week	Biweek	Month	Week	Biweek				
Lag=4	1	0.712	0.307	0.172	0.685	0.283				
Lag=8	3	0.726	0.656	0.266	0.695	0.488				
Lag=	12	1.554	1.432	0.329	1.176	0.511				
Lag='	16	1.578	1.554	0.394	1.186	0.559				
Lag=2	20	1.594	1.574	0.445	1.199	0.580				
Lag=2	24	3.031	1.609	0.483	1.209	0.605				

Fitting GEV distribution

$$G_{\gamma}(x) = \begin{cases} \exp\left[-(1+\gamma x)^{-\frac{1}{\gamma}}\right], & \gamma \neq 0 \\ \exp\left[-\exp(-x)\right], & \gamma = 0 \end{cases}$$

$$Type \ I \ (Gumbel, \ \gamma = 0): \qquad \exp[-\exp(-x)] \quad -\infty < x < \infty$$
$$Type \ II \ (Fréchet, \ \gamma > 0): \qquad \begin{cases} 0 & x \le 0\\ \exp[-x^{-1/\gamma}] & x > 0, \gamma > 0 \end{cases}$$
$$Type \ III \ (Weibull, \ \gamma < 0): \qquad \begin{cases} \exp[-(-x)^{1/\gamma}] & x < 0, \gamma < 0\\ 1 & x \ge 0 \end{cases}$$

where γ is the shape parameter of the extreme distribution.

Panel A: GEV fitting results									
			Statistics Parameter						
Data	Block	AIC	K-S	A-D	Shape				
	Weekly	19,435.2	0.030	0.802	2.272				
Comp	Bi-weekly	10,762.7	0.035	0.567	2.115				
	Monthly	5,464.7	0.058	0.667	1.661				
	Weekly	16,894.2	0.457***	296.64***	4.025				
Mal	Bi-weekly	10,182.0	0.103***	7.785***	3.670				
	Monthly	5,310.7	0.043	0.459	2.636				

Panel E	Panel B: Comparison with other distributions (AIC)								
Data	Block	GEV	L-norm	Gamma	GPD				
	Weekly	19,435.2	19,458.9	20,353.8	19,456.8				
Comp	Bi-weekly	10,762.7	10,814.0	11,229.7	10,784.4				
	Monthly	5,464.7	5,503.7	5,665.2	5,480.1				
	Weekly	16,894.2	16,819.3	17,453.1	15,665.4				
Mal	Bi-weekly	10,182.0	10,063.5	10,343.0	9,780.3				
	Monthly	5,310.7	5,398.2	5,415.3	5,359.8				
Panel C	: GPD fitting r	esults for weekly	and bi-weekly	malicious sei	ries				
Block (malicious risk)		Loglik	AIC	K-S	Shape				
Weekly		-7,830.6	15,665.4	0.000	3.033				
Bi-weekly		-4,888.1	9,780.3	0.016	2.971				

Panel A:	Test for ex	ktreme dep	endency	
		Er	tire period	
		Week	Biweek	Month
Pickands te	est	0.338***	0.027*	0.025
Panel B:	Bivariate e	extreme val	lue copul	as
Family	Copula	Week	Biweek	Month
Extreme	Gumbel-	-	-	1.702
Value	Hougaard			(0.192)
	Galam	-	-	1.646
				(0.189)
	Tawn	-	-	1.593
				(0.189)
	Husler-	-	-	1.617
	Reiss			(0.186)
Elliptical	Gauss	1.733	1.995	-
		(0.043**)	(0.026)	
	Т	3.790	4.014	-
		(0.415***)	(0.040)	
Archi-	Clayton	-2.410	1.968	-
mean		(0.054**)	(0.027)	

Probable maximum loss for data breach risk

$$P[\widetilde{M}_n \le \xi_p] = 1 - p,$$

$$\xi_p = G_{\widetilde{M}_n}^{\theta^{-1}} (1 - p)$$

for some small $p \in [0,1]$, where \widetilde{M}_n is a series of the cyber loss maxima and ξ_p is the probable maximum loss and $G^{\theta}_{\widetilde{M}_n}$ is the probability function of the cyber loss maxima series with the parameter of θ .

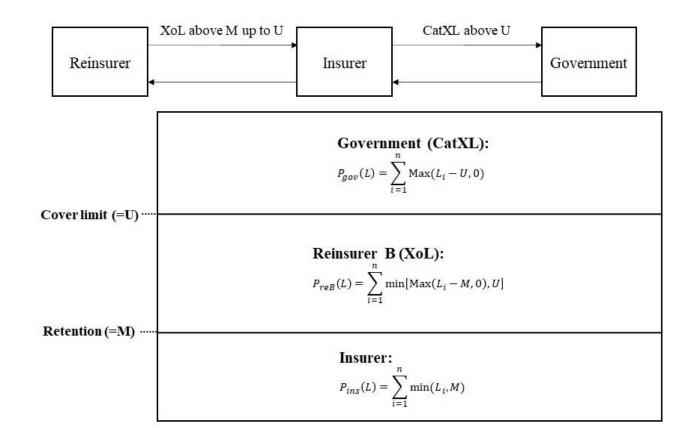
- Quantile-based estimation (Value-at-Risk)
- The loss vector consists of the maximum values at the quantile p

 \rightarrow a probable worst loss likely to occur p times out of 100 corresponding time units

Probable maximum loss for data breach risk

Panel A: F	PML estimate	s		/	(milli	on breach)	Panel	C: Thresl	hold-based	l	
		Composite	e Malicious	N	egligent	Dependence	estima	ition (Par	eto density	/	(million
	Entire Period	61.79	85.22	\checkmark	6.33	142.83	in the	tail)			breach)
Next 1 yr	Pre-2014	8.53	17.18	\land	2.99	26.73			99%	99.5%	99.9%
	Post-2014	1,333.90	785.04		18.26	1,347.07	Entire	Comp	10.81	263.64	1,001.86
	Entire period	692.21	1,539.94		52.46	2,241.70					
Next 3 yr	Pre-2014	50.72	227.04		15.19	284.48		Mal	8.18	382.35	1,407.30
	Post-2014	62.693.28	20,533.20	J	313.14	33,004.61					
	Entire period	2,053.21	5,987.12	X	140.76	8,723.67		Neg	0.50	110.21	478.38
Next 5 yr	Pre-2014	117.62	784.80	\sim	32.63	876.31					
	Post-2014	371,964.44	98,198.51	1	,179.38	132,992.70	Pre-	Comp	0.94	29.91	111.47
Panel B: E	Estimates of	the recent litera	ature		(milli	on breach)	2014				
	I	Edwards et al.	Wheatley et al. (2016)		Jung (2018)		Mal	4.24	46.58	149.14
		(2016)	(Truncated Pareto) (Correlated risk)								
		(Lognormal)		-	•	-		Neg	1.22	13.87	56.66
Data period	l Ja	n, 2005 – Feb,	Jan, 2007 – Apr,	2015	Jan, 2005	– Dec, 2016					
		2015					Post-	Comp	2.43	315.90	1,240.32
Data source	э	PRC	Open Security Foundation	tion &		PRC	2014				
				PRC				Mal	34.19	524.63	1,761.11
Loss estima	ate	130.00	3	00.00	>	1,053.11					
Time predic	ction	Next 3 yr	Nex	kt 5 yr	1 out	of 200 cases		Neg	0.63	202.33	734.77
						(99.5%)					

Reinsurance design with public-private partnership (three-layer program)



Reinsurance design with public-private partnership (three-layer program)

Translation from breach records to monetary loss

Panel A: Descriptive statistics of variables

	Ν	Mean	Std. Dev.	Q1	Median	Q3
Ln(total loss amount)	295	13.774	2.477	12.172	14.039	15.450
Ln(records)	295	9.011	4.195	5.635	8.491	11.747
Ln(revenue)	295	20.733	3.462	17.791	20.614	23.769
Ln(num of employees)	295	8.338	3.114	5.669	8.868	10.905
Risktype	295	0.942	0.233	1.000	1.000	1.000
Litigation	295	0.708	0.455	0.000	1.000	1.000

Panel B: Results of modeling the relation

	C	ependent variable	: Ln(total loss amo	unt)		
	Complete set	Size effe	ct	Time break effect		
Variable	Model 1	Model 2-1	Model 2-2	Model 3-1	Model 3-2	
Ln(records)	0.2491***	0.3367**	0.2737***	0.2453***	0.2727***	
	(0.0333)	(0.1377)	(0.0646)	(0.0438)	(0.0594)	
Ln(revenue)	-0.0888	0.1769	0.0255	-0.0771	-0.1083	
	(0.1353)	(0.2320)	(0.1815)	(0.1673)	(0.2599)	
Ln(num of employees)	0.1986	0.0855	-0.0003	0.1817	0.2055	
	(0.1497)	(0.2499)	(0.2044)	(0.1850)	(0.2884)	
Risktype	0.3555	0.7923	0.1295	0.3997	-0.2654	
	(0.5907)	(0.9255)	(0.7704)	(0.6993)	(1.3022)	
Litigation	0.4945	1.2228**	-0.0171	0.7361*	-0.1080	
-	(0.3308)	(0.5659)	(0.4236)	(0.4094)	(0.6151)	
Intercept	11.169***	3.907	9.819***	11.415***	13.392***	
·	(2.2207)	(3.7827)	(3.2975)	(2.8624)	(3.6852)	
Year FE	YEŚ	YEŚ	YEŚ	YEŚ	YEŚ	
Industry FE	YES	YES	YES	YES	YES	
Obs	295	148	147	203	92	
R ²	0.3521	0.4014	0.4060	0.3378	0.4710	

Reinsurance design with public-private partnership (three-layer program)

$H(X) = (1 + \delta) \cdot E(X)$

Panel A: Aggregate annual premium size for the reinsurer and the insurer

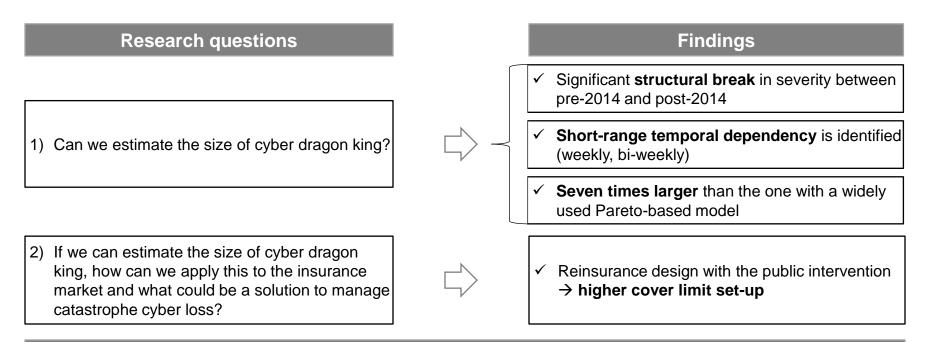
00_0		Insurer			Reinsurer			
(\$ million)	Entire	Pre-2014	Post-2014	Entire	Pre-2014	Post-2014		
Malicious event	557.811	359.155	617.910	501.155	108.444	1,836.967		
Negligent event	526.667	333.518	614.827	366.959	26.890	1,408.630		

Panel B: Loss estimates per cyber event for the government in the next year (above the cover limit)

(\$ million)	Average loss	Std	90%	95%	99%	99.5%
Malicious event	4.145	11.928	12.769	21.809	49.900	65.502
Negligent event	1.016	4.177	3.077	6.516	15.702	20.175

- If a malicious loss event at the 99.5% confidence level occurs, the government would pay nearly \$65.5 million for this event, which is above the cover limit based on the probable maximum loss estimate.
- Lowering vs. raising the cover limit and the effect of the public back-stop on the adjustment of the cover limit.

Findings and Conclusion



Further implications

- A social discussion between (re)insurers and responsible government entities is encouraged to agree on the limit level to determine the size of financial backstop by the government.
- A comprehensive offer for cyber risk management by insurers with a government's regulation to require a certain level of cyber security (public good) can be another way of the partnership.

Implications in the Korean market (토의 쟁점)

데이터 3법과 사이버 리스크

- 가명정보의 활용 가능성과 함께 데이터의 활용범위 확대, 활성화로 인해 위험으로의 노출은 커질 것.
- 단, 가명정보의 가치는 매우 낮고, 실제 개인정보로의 결합을 위한 추가정보 유출도 난해.
- DB결합을 위한 전문 기관으로의 해킹, 개인정보 유출 사건들이 증가할 가능성.

Dragon King 손실가능성

- Dragon King 손실이 발생할 가능성:
 - 상호연결성이 높은 금융사들로의 해킹 발생
 - 2. 주요 공공/산업 인프라로의 해킹 발생
 - 시스템 리스크로 인한 손실과 기존 손해보험 보장으로의 영향
 - 4. 징벌적 손해배상

Thank you for your attention!

