Ⅱ. 날씨리스크와 산업

1. 날씨리스크의 정의

- 날씨변화로 발생하는 모든 손해 및 손실을 일반적으로 날씨리스크라 볼 수 있음.
 - 날씨리스크는 태풍, 기습폭설, 홍수와 같은 자연재해와 이상한파, 이상고 온, 가뭄 등 평소와 다른 기후 형태를 나타내는 이상기후로 구분해 볼 수 있음.
- 전술한 바와 같이 짧은 시간 동안의 기상이변에 따른 자연재해와는 달리 이 상기후는 일상생활 및 기업 활동의 재무성과에 지속적으로 큰 영향을 미침.
 - 특히, 냉난방산업, 빙과산업, 의류산업, 레저산업 등의 경우 제품의 수요 와 공급이 날씨로부터 직접적 영향을 받게 되므로 날씨로 인해 수익성이 달라질 수 있음.
 - 이상기후가 생산시설이나 제품 등에 직접적인 피해를 초래하는 경우는 많지 않으나, 소비자들의 소비패턴 변화를 야기하여 결국 수요의 변화로 이어질 수 있음.
 - 또한, 이상기후로 인해 원자재 가격 변동 발생 시 생산차질에 따른 공급에 도 영향을 줄 수 있음.

2. 날씨가 산업에 미치는 영향

- 실제 경제활동을 하는 모든 경제주체가 외생적으로 나타나는 날씨변화에 영향을 받게 되나, 그 중 농업, 에너지산업, 리조트산업 등이 날씨변화에 크게 영향을 받음.
 - 날씨리스크를 야기하는 요소로는 주로 기온, 강우, 강설을 들 수 있음.
 - 천연가스, 전력 등 에너지산업이나 빙과 및 음료업의 경우 여름 또는 겨울철이 예상보다 시원하거나 따뜻할 경우 매출액이 감소함.
 - 테마파크의 경우 강우 일수가 많을 경우 입장객이 감소하여 매출액이 감소하며, 스키장은 강설량이 너무 적은 경우 입장객이 감소하거나 인 공눈을 만드는 비용이 증가하면서 재무적 손실이 발생할 수 있음.
 - 한편, 농·과수업의 경우 이상저온 또는 가뭄에 따른 농작물 피해로 재산상 피해를 입을 수 있음.

〈표 Ⅱ-1〉 산업별 날씨리스크 형태

산업	날씨리스크 요소	형태
에너지 공급	기온	따뜻한 겨울, 시원한 여름에 매출 감소
에너지 소비	기온	혹한 겨울이나 혹서 여름에 냉난방비용 상승
빙과 및 음료업	기온	추운 여름에 매출 감소
유통업	기온, 강우, 강설	날씨변화에 따른 상품매출 감소 및 매장고객 감소
제조업	기온	냉난방기 제조업의 경우 기온변화에 따라 매출 감소
건설업	기온, 강우, 강설	나쁜 날씨에 따른 건설기간 연장
스키장	강설	평균보다 적은 강설량에 따른 매출 감소
테마파크	강우, 기온	강우일수가 많을 경우 입장객 수 감소
농·과수업	기온, 강우, 강설	기온이나 강우량 변화에 따른 수확량 감소

자료: 삼성금융연구소(2004. 6), 『날씨파생상품(Weather Derivatives)의 국내 도입 필요성 및 주요과 제』, 발표자료: 황진태·조재린(2012) 재인용.

- 한국기상산업진흥원에 따르면 우리나라는 국민총생산(GDP)의 52%에 해 당하는 산업이 날씨의 영향을 받는 것으로 나타남.
 - 일반적으로 접객업소의 경우 매출이 비가 오는 날 5%, 눈이 오는 날 10%, 강수량이 10mm 이상일 때 50% 이상 감소함.
- 아울러, 대체에너지 설비 증가로 일조량 또는 풍량 등도 점차 해당 대체에 너지 산업의 날씨리스크가 될 수 있음.
 - 태양광 발전소나 풍력발전소 등의 경우 일조량 또는 풍량 영향을 많이 받게 되므로 이들이 해당 산업의 날씨리스크 요소가 됨.
- 기상청의 "2010 이상기후 특별보고서"에 따르면 2000년대 들어 이상기후에 따른 에너지 소비 증가율 변화가 커지고 있는 것으로 나타남.
 - 기후요인이 에너지 소비에 많은 영향을 준 기간은 2003~2007년과 2010년
 인 것으로 분석됨.
 - 이상기후가 2005년 총에너지 소비 증가율을 전년대비 2.8%p 상승시킨 반면, 2007년에는 2.8%p 하락시키는 효과를 나타낸 것으로 추정되고 있음.
 - 기후요인은 2005년 에너지 소비가 332만 1,000TOE(석유환산톤)만큼 증가 (총에너지 소비의 1.5%), 2003~2004년 및 2006~2007년에는 감소 방향으로 작용함.
 - 에너지 소비가 증가한 2005년에는 겨울철 HDD(난방도일)가 높아 에너지 소비가 증가하였으며, 2003~2004년 및 2006~2007년은 HDD가 낮아 감소함.²⁾
 - 2004년 HDD는 2003년에 비해 낮은 반면, 2004년 CDD가 2003년에 비해 높게 나타남에 따라 각 해당 연도의 연평균 에너지 소비 감소 효과는 비슷하게 나타남.

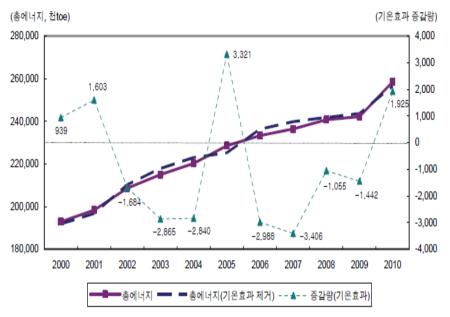
^{2) 〈}그림 II-1〉과 〈그림 II-2〉를 볼 때 HDD 또는 CDD와 에너지 소비 간의 관계가 원보고서에서의 주장처럼 일부 나타나는 것으로 판단되나, 이러한 관계에 대한 명확성은 많은 자료와 엄격한 분석을 통해 향후 규명되어질 필요가 있음.

- ※ HDD와 CDD 계산
- HDD 계산은 몇 가지 단계를 거침.
 - \circ 첫째, 매일의 평균 온도 T_i^{avg} 를 각 일자 i의 최고 기온과 최저 기온의 평균으로 계산함.

$$T_i^{avg} = \frac{T_i^{\min} + T_i^{\max}}{2}$$

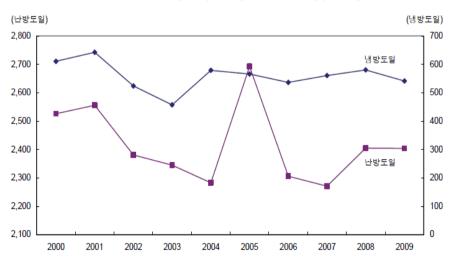
- 매일의 HDD는 기준온도(reference temperature)에서 해당일의 평균 온 도가 얼마나 퍼져 있는지 정도를 나타내는 숫자임.
- 기준온도는 유럽과 세계 대부분의 지역에서는 18℃, 미국에서는 65°F이며, 이둘 간의 기준온도 차이는 미미한 수준임.
- 맞춤형 거래, 특히 열대지방의 경우는 다른 기준온도가 선택될 수 있음.
- 기준온도가 18℃인 경우 일별 HDD는 다음과 같이 계산됨.

$$HDD_i = \max(0.18 - T_i^{avg})$$


○ 마찬가지로 일별 CDD는 다음과 같이 계산됨.

$$CDD_i = \max(0, T_i^{avg} - 18)$$

○ 전체 냉방 또는 난방일수는 n일 동안의 일별 값들을 모두 합산하여 산출함.


$$HDD^n = \sum_{i=1}^{i=1} HDD_i$$
 and $CDD^n = \sum_{i=1}^{i=1} CDD_i$

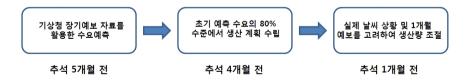
〈그림 Ⅱ-1〉기온효과에 따른 총에너지소비 차이

자료: 기상청(2012), 「2010 이상기후 특별보고서」.

〈그림 I-2〉난방도일(1·4/4분기) 및 냉방도일(3/4분기) 추이

주: 냉방(난방)도일은 일평균 기온이 기준치(18℃)보다 높을(낮을) 경우 일평균 기온과 기준치 간 차이임.

3. 날씨리스크의 관리


가 자체 관리3)

- 자체 관리란 날씨리스크에 노출된 기업 스스로 리스크를 관리하는 방법임.
- 에너지산업은 수요예측, 시설물 관리 등에 기상정보를 활용하고 있음.
 - 에너지 수요는 특히 기온에 따라 판매량이 크게 변하는 반면, 시설물 상황 은 낙뢰, 태풍 등의 영향을 크게 받음.
 - 삼천리, ㈜에코브레인, 한국수력원자력, 한국전력거래소 등은 수요예측, 시설물 관리, 재해예방 등에 주로 기상정보를 활용하고 있음.
- 예를 들어, 도시가스 사업자인 삼천리의 경우 비용절감 및 경영효율화를 위 해 기상정보를 활용하고 있음.
 - 기상정보를 이용한 판매량 예측으로 약정물량 초과(미달)에 따른 비용을 절감함.
 - 도시가스는 전량에 가까운 물량을 수입하고 있으며, 국가적 에너지수 급계획에 의해 도시가스 사업자는 매년 판매물량을 예측하여 도시가 스 판매량을 약정함.
 - 일정 부분 오차가 발생할 시 도매공급자에게 추가금액을 부과 받음.
 - 기상청의 장기예보(1, 3개월)를 활용하여 전체 판매의 큰 비중을 차지하는 동절기 판매량 예측의 정확도를 높임으로써 경영계획 수립 및 판매량 예 측 소요기간을 단축함.
 - 배관공사 기간 관리 및 시설물관리에 우천 예보정보를 활용함으로써 재시 공 및 시설물 복구비용을 절감함.

³⁾ 자세한 내용은 기상청(2011)을 참조하기 바람.

- 우천 예보 정보를 활용한 도시가스 배관공사의 공기 단축 및 공사품질 향상, 우기 시 사전 공급물량 예측에 기온 예측 정보를 활용함.
- 기온 정보 활용으로 갑작스런 한파에 대비한 사전조치가 가능해짐에 따라 업무시간 이후 비상출동 횟수가 감소하고 안정적인 도시가스 공급이 가능 해짐.
- 유통 분야의 경우 마케팅과 재고관리에 기상정보를 활용하고 있음.
 - 날씨는 소비자의 구매심리, 원자재 수급, 판매량 등에 영향을 미침.
 - 특히, 빙과류, 냉·난방기 등의 계절상품 생산업체는 날씨에 따라 생산량, 판매량 등이 민감하게 변함.
 - LG생활건강, ㈜CJ오쇼핑, 홈플러스㈜ 등은 판매전략 수립 등에 기상정보 를 활용하고 있음.
- 가령, 유통업체인 LG생활건강은 기상정보를 활용하여 명절선물세트 및 살충 제의 수요를 예측하여 마케팅에 활용함.
 - 기상정보를 활용한 명절 선물세트 수요예측 및 생산량 결정으로 2010년 추석, 2011년 설에 시즌 최대 매출을 기록함.
 - 기상정보를 활용해 농수산물의 가격 동향도 예측함.

〈그림 Ⅱ-3〉 기상 예보자료 활용을 통한 선물세트 생산계획 수립 프로세스

○ 또한, 봄철 온도 예보자료를 활용하여 모기의 번식 시기를 예측함으로써 살충제의 생산시기와 판매시기, 생산량을 결정함.

- 건설업과 조선업은 공정관리, 품질관리 등에 기상정보를 활용하고 있음
 - 두 산업 모두 공정과정이 옥외에서 이루어지므로 태풍, 갓수, 바람 등에 큰 영향을 받음.
 - 조선업의 경우 태풍, 홍수, 해일 등의 재해에 노출되어 있음.
 - 건설업의 경우 기온, 강수, 바람의 영향을 크게 받음.
 - STX 조선해양, 대우조선해양, 대우건설 등의 경우 공정관리, 품질관리 등 에 기상정보를 활용하고 있음

나. 리스크 전가

- 날씨리스크를 전가하는 방법으로 전통적 날씨보험, 지수형 날씨보험, 날씨파 생상품 등이 있음.
- 전통적 날씨보험은 날씨리스크에 따른 재무적 손실을 실손으로 보상하는 보 험임.
 - 보험금 지급을 위해서는 재무적 손실이 입증되어야 함.
 - 전통적 날씨보험은 주로 상금보상보험, 행사취소보험 등의 형태이며, 단 발성 사건 발생으로 나타나는 손실위험을 담보함.
 - 강우로 인해 발생한 영업손실을 담보하는 보험(예, 에버랜드)도 있음.
- 지수형 날씨보험은 날씨변화에 대한 사건 발생 자체가 거래의 전제조건임.
 - 사건의 발생이 재무적 손실을 주었는지는 중요하지 않음.
 - 단, 보험의 원리(실손)에 따라 과도한 보상이 이루어지지 않도록 상품이 설계될 필요가 있음.
- 날씨파생상품도 날씨변화에 대한 사건 발생 자체가 거래의 전제조건임.
 - 지수형 날씨보험과 마찬가지로 사건의 발생이 재무적 손실을 주었는지는

중요하지 않음.

- 단지 거래당사자가 자신의 리스크 헤지를 위해 거래하는 것임.
- 특히, 날씨변화에 따른 재무적 손해 발생이 전제될 필요가 없으므로 거래 상대방에 투기 목적을 가진 투기자들(speculators)이 존재할 수 있음.