# 연금보험상품 경쟁력 제고 방안: BACK TO THE BASICS (초고령사회를 대비한 개인연금 경쟁력 제고방안)

#### 장 철 교수

## 한양대학교 금융보험학과

#### 보험연구원·한국연금학회 공동세미나 2023.08.30.

## Overview

- 1. What are the basics?
- 2. Transferring the longevity risk
- 3. Take advantage of long-term investing
- 4. Concluding remarks

What are the basics?

$$I_x$$
: 생존자수,  $r_t$ : 투자수익률 $\mathbb{E}[I_x imes r_t]$  $\mathbb{V}[I_x imes r_t]$ 

경쟁력(보장성) ↓ & 수익성 ↓

 $\begin{cases} \mathsf{M} ortality \ \mathsf{Improvement} \times \mathsf{Adverse} \ \mathsf{Selection} \Rightarrow \mathsf{Higher} \ \mathsf{Loadings} \\ \mathsf{Lower} \ \mathsf{investment} \ \mathsf{returns} \end{cases}$ 

소비자에게는 노후에 장수위험 등을 두텁게 보장하는 연금보험 상품이 필요하고, 제공자인 생명보험회사는 확실한 수익성을 원하고 있음.

## Transferring the longevity risk

Transferring the longevity risk from an insurer to policyholders reduces required risk capital, i.e., capital cost  $\downarrow$  then annuity premium  $\downarrow$ .

Insightful annuity designs from academic studies:

- Denuit, Michel, Steven Haberman, and Arthur Renshaw. 2011.
   "Longevity-Indexed Life Annuities". North American Actuarial Journal 15: 97–111.
- Milevsky, Moshe A., and Thomas S. Salisbury. 2015. "Optimal Retirement Income Tontines". *Insurance: Mathematics and Economics* 64: 91–105.
- Chen, An, Yusha Chen, and Xian Xu. 2022. "Care-Dependent Tontines". *Insurance: Mathematics and Economics* 106: 69–89.

# Denuit et al. (2011), "Longevity-Indexed Life Annuities"

Suggest that the annuity benefit at time k is adjusted by the factor

$$i_{t_0+k} = rac{{}_k oldsymbol{
ho}_{x_0}^{ref}(t_0)}{{}_k oldsymbol{
ho}_{x_0}^{obs}(t_0)}.$$

In other words, the annuity benefits depend on the "expected/actual" ratio of reference population data.

 $\Rightarrow$  Longevity risk partly transferred to policyholders; i.e., systemic risk  $\Downarrow$ .

# Milevsky & Salisbury (2015), "Optimal Retirement Income Tontines"

#### Tontines completely transfer the risk to the policyholders!



It is also possible to generate somewhat stable annuity benefits.

장 척 교수 (하양대학교)

## Chen et al. (2022). "Care-Dependent Tontines"

Care-dependent (LTC) benefits are viewed as an advance of additional "mortality credit".

#### Table 5.3

Risk loading  $F_0$  for different pool sizes n using the baseline parameter setting from Table 5.1. Net premium  $P_0^{oc_1} = P_0^{oc_2} = P_0^{ac} = v = 10000$ , subjective discount rate  $\rho = 0.02$ , risk-free rate r = 0.02, initial age x = 60, risk aversion coefficient  $\gamma = 2$ , and payment weighting factor  $\alpha = 0.5$ .

| п    | $F_0^{oc_1}$ | $F_0^{oc_2}$ | $F_0^{ac}$ |
|------|--------------|--------------|------------|
| 10   | 144          | 270          | 595        |
| 100  | 41           | 14.9         | 595        |
| 500  | 37.7         | 0.978        | 595        |
| 1000 | 37.6         | 0.255        | 595        |
| 2000 | 37.6         | 0.0648       | 595        |
| 5000 | 37.6         | 0.0071       | 595        |

## Take advantage of long-term investing

For a long retirement period, we may combine equity-indexed & longevity-linked annuity with some guarantees, see Kabuche (2023).

We can also guide policyholders to purchase deferred annuities during their working period to maximize their retirement income utility.

- On October 23, 2014, the US Treasury allows target date funds to include DAs among their assets in 401(k) plans.
- Owadally, Iqbal, Chul Jang, and Andrew Clare. 2021. "Optimal investment for a retirement plan with deferred annuities". *Insurance: Mathematics and Economics*, 98, 51–62.
- Ising, Chul, Andrew Clare, and Iqbal Owadally. 2022. Glide paths for a retirement plan with deferred annuities. *Journal of Pension Economics and Finance*, 21(4), 565–581.

# TDF with deferred annuities (DAs)



Figure 2.4 - Optimal investment and deferred annuity allocations of overall wealth on average at various ages over the planning horizon and for different risk aversion (CRRA) coefficients.

Source: Owadally et al. (2021)

## Performance of DA-enhanced glide paths



Figure 4.4 - Certainty equivalent retirement income (£1,000 p.a.) and expected retirement income per unit risk for various investment strategies.

Source: Jang et al. (2022)

장 철 교수 (한양대학교)

## Concluding remarks

- 초고령자에게 적합한 연금보험(종신(장수)연금 및 LTC연금)은 초장기계약으로 보험회사가 확정적으로 매력적인 급여를 제공하며 수익을 발생시킬 수 없음
- 계약자와 위험을 공유하면 보험회사는 자본비용과 위험마진을 줄여 더 나은 보장이 가능하고 수익의 불확실성도 개선할 수 있음
- 계약자(피보험자)와 장수위험을 공유하는 경우, heterogeneous longevity risks을 가진 계약자간 공정성 문제(pension equity 또는 annuity fairness)가 발생할 수 있음
- 장기요양(LTC)이나 고령거치종신연금(Deferred Income Annuity) 등의 보험구매를 위하여 적립금을 사용하는 경우, 해당 인출금액에 대해서는 연금소득세보다 낮은 세율을 적용하거나 면세혜택을 주는 것도 고려해야함
- 보험업감독규정에서 해당 보험상품의 설계 및 판매가 가능한지 검토가 필요함

Retirement income innovations are not only for life insurers!

# Tontine in funds - 저해지 변액보험?

GuardPath Modern Tontine (Guardian Capital, Canada announced on September 7, 2022)



### References I

- Chen, A., Chen, Y., & Xu, X. (2022). Care-dependent tontines. *Insurance: Mathematics and Economics*, 106, 69–89. doi:10.1016/j.insmatheco.2022.05.002.
- Denuit, M., Haberman, S., & Renshaw, A. (2011). Longevity-Indexed Life Annuities. North American Actuarial Journal, 15, 97–111. doi:10.1080/10920277.2011.10597611.
- Jang, C., Clare, A., & Owadally, I. (2022). Glide paths for a retirement plan with deferred annuities. *Journal of Pension Economics & Finance*, *21*, 565–581. Publisher: Cambridge University Press.
- Kabuche, D. (2023). Longevity Risk: Retirement Product Innovation and Risk Management Strategies. Thesis UNSW Sydney. doi:10.26190/unsworks/24865.
- Milevsky, M. A., & Salisbury, T. S. (2015). Optimal retirement income tontines. *Insurance: Mathematics and Economics*, 64, 91–105. doi:10.1016/j.insmatheco.2015.05.002.
- Owadally, I., Jang, C., & Clare, A. (2021). Optimal investment for a retirement plan with deferred annuities. *Insurance: Mathematics and Economics*, *98*, 51–62.

장 철 교수 (한양대학교)