퇴직연금 손익 위험 관리전략에 관한 연구
- 평균-분산 최적화 접근법 -

2007. 3

성주호

보험개발원
보험연구소
머 리 말

퇴직연금제도가 도입 시행된 지 1여년이 경과하였지만, 그 성과는 활성화의 초기단계라고 보기에는 어려움이 있다. 최근 노동부 발표에 의하면, 2006년 말 현재 퇴직연금 적립금 규모는 약 7,524억원으로 시행 1년차 예상 적립액의 6.3%수준에 머물고 있는 실정이다. 이러한 조기 연착륙의 어려움은 중간정산제도(97년 3월 도입)의 보편화, 기존 퇴직금융시장의 80%이상을 차지하고 있는 퇴직보험시장을 퇴직연금시장으로 조기 전환할 경우 미정산배당권 소멸 문제, 퇴직보험의 보완재로 인식하는 사업장 복지 정책 그리고 운용관리 금융기관의 전문성 미비 등 제도적·실무적·인적 장애요소가 내재하고 있기 때문이라 생각된다. 물론 1830년대에 이미 퇴직연금제도가 활성화된 서구유럽과 비교하면, 신제도 도입에 따른 사회경제적 효율성을 기대하는 것은 성급한 측면도 있다.

이 연구는 운용관리업무의 전문성을 제고하고, 더 나아가 퇴직연금시장의 활성화를 도모할 수 있는 연금재정컨설팅의 표준적 가이드라인을 제시하기 위해 수행되었다. 특히 확정급여형 퇴직연금제도에 내재된 기여위험 그리고 지급능력위험을 수리모형 과정을 거쳐 효율적으로 관리하는 체계적 전략을 제시하고 있다.

이 연구는 2005년 10월부터 1년간 우리 원의 객원연구위원으로 재직하였던 경희대학교 성주호 교수에 의해 진행되었다. 본 보고서가 퇴직연금시장의 활성화를 위한 유익한 연구자료로 활용되기를 희망하며, 보고서 작성에 심혈을 기울인 성주호 교수에게 감사를 드린다. 아울러 아낌없는 자문과 조언을 해준 내·외 전문가들에게도 감사를 표한다.

마지막으로 이 보고서에 수록된 내용은 연구자 개인의 의견이며 우리원의 공식적인 견해가 아님을 밝힌다.

2007년 3월

보험개발원
원장 김창수
목 차

요약 ... 9

I. 서론 ... 15
 1. 연구배경 및 목적 ... 15
 2. 연구방법 ... 20
 3. 근퇴법상의 급여설계 ... 22

II. 손익위험 관리모형의 가정 및 해설 ... 25
 1. 개요 ... 25
 2. 모형화 가정 I ... 26
 3. 가정 I 해설 및 기본 모형 .. 27
 4. 모형화 가정 II ... 31
 5. 가정 II 해설 및 기본 모형 ... 32

III. 손익위험 관리 목표값 설정 ... 36
 1. 개요 ... 36
 2. PUM 적립방식 ... 36
 3. ENT 적립방식 ... 44
 4. ATM 적립방식 ... 51
 5. 수치 예시 ... 54

IV. 연기금 투자위험 최적관리전략 ... 68
 1. 개요 ... 68
 2. Markowitz, Tobin, Samuelson의 평균・분산 모형 ... 70
 3. 평균・분산 무차별 근사곡선 도출 .. 75
4. 최적 연기금자산 배분 전략 ... 82
5. 퇴직연금 자산배분 현황 ... 83

V. 연기금 적립위험 최적관리전략 ... 87
 1. 개요 .. 87
 2. 표준부채 vs. 연기금 자산 성장모형 88
 3. 이연상각 모형 및 손익위험 측정 모형 93
 4. 손익위험의 평균 · 분산 분석 ... 104
 5. 최적 평가이율 전략 .. 110
 6. 최적 손익위험 상각 전략 ... 112
 7. 수치 예시 및 시사점 .. 115

VI. 결론 .. 121

참고문헌 ... 123
<table>
<thead>
<tr>
<th>표</th>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>표 I-1</td>
<td>DB 퇴직연금시장 참여자간의 이해관계모형</td>
<td>17</td>
</tr>
<tr>
<td>표 III-1</td>
<td>최근 7년 회사채수익률</td>
<td>55</td>
</tr>
<tr>
<td>표 III-2</td>
<td>최근 7년 임금상승률</td>
<td>56</td>
</tr>
<tr>
<td>표 III-3</td>
<td>PUM 산정예시 I</td>
<td>58</td>
</tr>
<tr>
<td>표 III-4</td>
<td>PUM 산정예시 II</td>
<td>59</td>
</tr>
<tr>
<td>표 III-5</td>
<td>PUM 산정예시 III</td>
<td>60</td>
</tr>
<tr>
<td>표 III-6</td>
<td>ENT 산정예시 I</td>
<td>61</td>
</tr>
<tr>
<td>표 III-7</td>
<td>ENT 산정예시 II</td>
<td>62</td>
</tr>
<tr>
<td>표 III-8</td>
<td>ENT 산정예시 III</td>
<td>63</td>
</tr>
<tr>
<td>표 III-9</td>
<td>ATM 산정예시</td>
<td>64</td>
</tr>
<tr>
<td>표 IV-1</td>
<td>1926년~2002년 미국 투자수익률의 평균 및 표준편차</td>
<td>78</td>
</tr>
<tr>
<td>표 IV-2</td>
<td>투자자 유형별 위험회피계수</td>
<td>80</td>
</tr>
<tr>
<td>표 IV-3</td>
<td>퇴직연금 적립금 현황(전 금융권 합계)</td>
<td>84</td>
</tr>
<tr>
<td>표 IV-4</td>
<td>퇴직연금 위험자산 구성비율 추계</td>
<td>86</td>
</tr>
<tr>
<td>표 V-1</td>
<td>현행 IPSL 법정 최소상각 연도별 스케줄</td>
<td>92</td>
</tr>
<tr>
<td>표 V-2</td>
<td>최적 손익상각율(k^*)</td>
<td>118</td>
</tr>
<tr>
<td>표 V-3</td>
<td>최적 손익위험 관리에 따른 기여위험 측정값</td>
<td>118</td>
</tr>
<tr>
<td>표 V-4</td>
<td>최적 손익위험 관리에 따른 지급능력위험 측정값</td>
<td>119</td>
</tr>
<tr>
<td>표 V-5</td>
<td>최적 기여위험 및 지급능력 관리결과($FPI(k^*)$)</td>
<td>120</td>
</tr>
</tbody>
</table>
<그림 차례>

<그림 I-1> 주요 위험 및 관리 전략 ... 18
<그림 I-2> 안정적 손익위험 관리도 ... 21
<그림 I-3> DB 퇴직연금규약상의 연금채무 분류(GML vs. VL) 22
<그림 II-1> 예상 투자수익률을 결정하는 주요 요인들 35
<그림 III-1> AL 및 NC의 개인별 전이특성 ... 44
<그림 III-2> PUM의 NC비교(S(x) 대비) ... 65
<그림 III-3> ENT의 NC비교(S(x) 대비) ... 65
<그림 III-4> PUM의 AL 비교(S(x) 대비) ... 66
<그림 III-5> ENT의 AL 비교(S(x) 대비) ... 66
<그림 III-6> PUM, ENT, ATM의 NC 비교(예시 I) 67
<그림 III-7> PUM, ENT, ATM의 AL 비교(예시 I) 67
<그림 IV-1> 자산배분전략 컨설팅 ... 69
<그림 IV-2> 위험자산과 무위험자산의 효율적 자산배분 71
<그림 V-1> 표준부채 성장모형 ... 90
<그림 V-2> 연기금 자산의 확률론적 성장모형 .. 93
<그림 V-3> 연기금 재정평가와 필요기여액 산출 메커니즘 95
<그림 V-4> 이연상각방식 vs. 손익상각방식 효율성 비교 예 97
<그림 V-5> 평가년도 말 연금 재정 요약표 ... 104
<그림 V-6> 최적 위험자산 투자비율(α^*) ... 116
<그림 V-7> 최적 평가이율(i^*) ... 117
<그림 VI-1> DB 연기금 관리 요약도 .. 122
요약

I. 서론

퇴직연금제도 시행 1년의 성과는 2006년 말 현재 적용대상 사업장의 약 3.5%(10인 미만 영세 사업장이 전체의 70% 수준)이며, 도입 단계의 예상 적립액의 6.3%수준에 머물고 있음. 부진의 주요 원인으로,
○ 중간정산제도의 확산
○ 퇴직보험을 퇴직연금제도로 조기 전환 시 계약자이익배당준비금에 대한 배당권 소멸의 불이익
○ 운용관리업무의 연금컨설팅 비전문성 및 전문 인적자원 부족
○ 퇴직보험의 보완책로 인식하는 노사 분위기 등

본 연구의 궁극적 목적은 DB퇴직연금제도의 활성화를 도모하는 연금컨설팅 전략의 표준적 가이드라인을 제공함
○ 최적 투자 관리(optimal pension investment management)
○ 최적 적립 관리(optimal pension funding management)

연구의 목적을 수행하는 방법론으로 평균-분산 최적화 접근법을 적용함

II. 손익위험 관리모형의 가정 및 해설

최적 적립 관리의 이상적 목표값 설정은 현실 세계를 반영한 확정적 가상모형(모형화 가정 I)을 통하여 구축함
○ 표준채무(AL) 및 표준기여금(NC)등 연기금 운용 목표값 산정을
위한 모형화 가정
○ AL은 이상적 연기금관리의 목표값, NC는 이상적 적립관리의 목표값으로 활용됨

□ 최적 투자 관리를 위한 확률론적 가상투자모형(모형화 가정 II)을 구축함
○ 펀드수익률의 성과는 자산배분전략에 의해 약 92%가 결정된다는 실증분석에 근거하여 투자자본시장을 위험자산과 무위험자산으로 구성됨을 전제함
○ 투자수익률의 성과가 연기금 관리의 성패에 가장 직접적 영향을 미친다는 실증분석에 근거하여 예상투자수익률을 확률적 랜덤워크 프로세스로 가정함
○ 최적 자산배분전략을 위해 정태적 방법론(static approaches)을 채택함

□ 모형화 가정을 통하여 퇴직연금 손익위험은 기여위험과 지급능력위험으로 대별됨을 제시함

□ 주요 변수들에 대한 논리전개의 명확성을 제고하기 위해 제리적 접근법을 지양하고 거시경제학적 접근법을 채택함

III. 손익위험 관리 목표값 설정

□ AL 및 NC 산정을 위한 적립방식으로 예측금부단위적증방식(PUM), 가입연령방식(ENT) 그리고 퇴직급여추계액방식(ATM)의 비교 분석
○ PUM은 국제연금회계기준(IFRS No. 19)에서 유일하게 권고하는 논리적 근거 탐색(즉, 회계적 발생주의에 부합하는 자연보험료 산출체계와 유사함)
요약

○ ENT 방식이 보험수리적 산출체계(평준순보험료, 순보험료식 책임 준비금)의 유사함을 검증
○ ATM은 사후적립방식의 특성으로 확정기여형 재원조달방법과 동일함을 검증함

각 적립방식에 대하여 재무보고용 모형과 약식 관리보고용 모형으로 구분하고, 동태적 모형을 제시함

평가이율과 예정임금상승률의 차이로 정의되는 순이자율 가정의 적정성 여부가 노사간의 이해관계를 조율할 수 있는 운용관리 컨설팅 업무의 출발점임을 강조함
○ 순이자율을 높게 설정하는 낙관적 관점은 사용자의 단기적 재무 부담을 덜어주는 효과가 있는 반면 중장기적으로 연금 재정의 불안정성을 높일 개연성이 있음을 수치로 예시함
○ 순이자율을 낮게 설정하는 비관적 관점은 연금 재정의 안전성을 지나치게 강조하는 보수적 입장은 견디지 않을 수치로 예시함

IV. 연기금 투자위험 최적관리전략

모형화 가정 II에 의해 무위험자산과 위험자산에 대한 투자비용을 결정하는 자산할당전략을 구축함
○ 마코비츠 - 토빈 - 사류엘슨의 평균-분산 접근법을 적용
○ 위험회피형 투자자의 위험회피계수에 대한 검토
○ 위험회피형 투자자의 효용함수를 평균-분산 접근법에 근거하여 구축함
○ 본 뉴만 & 모겐스턴의 기대효용가설에 근거한 최적 자산배분전략 수립
현행 퇴직연금 자산배분 현황에 대한 검토

현행 위험자산 구성 비율은 금융기관 전체 평균이 약 28% 수준이며, 금융권별로는 증권업이 가장 높은 수치(약 86%)이고 그 다음은 은행권 그리고 보험권 순으로 추계됨.

미국 자본시장의 경우 보수적 입장을 견지하여도 약 55% 수준으로 추계됨.

현행 퇴직연금 투자시장은 노사 공히 소극적 금융행위를 행하고, 아울러 금융기관의 연기금 운용 전설팀 또한 보수적 입장을 견지하는 것으로 추론됨.

V. 연기금 적립위험 최적관리전략

퇴직연금 손익 원천별 분석은 회계적 접근법보다 계리적 접근법이 우수함을 제시함.

표준부채와 연기금 자산의 비대칭 변동성을 지급능력위험으로 정의하고 평균-분산 분석을 통하여 관리 전략을 검토함.

표준기여액과 실제기여액의 비대칭 변동성을 기여위험으로 정의하고 평균-분산 분석을 통하여 관리 전략을 검토함.

지급능력위험과 기여위험을 동시에 조율하는 보조적립방법으로 북미식 손익상각방법(amortization of losses method)과 유럽식 이연상각방법(spread method)의 상대적 우위를 제시함.

이연상각방법이 기여위험을 조율함에 비교우위에 있음을 검토함.

손익상각방법이 지급능력위험을 조율함에 비교우로에 있음을 검토함.

결론적으로, 지급능력위험은 기여위험과 양의 상관관계가 있는 관
계로 두 위험을 동시에 조율함에 있어서 이연상각방법이 더 효율적임.

본 연구에서 핵심적 과제인 투자위험 및 적립위험 관리 메커니즘은 아래의 그림으로 요약 정리됨.

<그림 1> DB 연금 관리 연구 전개도

예상투자위험 측정: $E(i_{t+1})$ vs. $Var(i_{t+1})$

적립에 의한 비대칭위험 측정: $E[AC(t)]$ vs. $Var[AC(t)]$

투자에 의한 비대칭위험 측정: $E[UL(t)]$ vs. $Var[UL(t)]$

최적 평균-분산 위험관리 접근법

최적 손익 위험 통제(optimal controls)

최적 자산배분 전략 설정 (i_{w}^{*})

최적 평가이율 전략 설정 (i_{v}^{*})

최적 손익 상각 전략 설정 (k^{*})
I. 서론

1. 연구 배경 및 목적

가. 연구 배경

퇴직연금제도가 도입 시행된 지 1여년이 경과하였다. 도입초기 정부는 고령화·저출산에 대비한 노후생활의 안정화, 기업경영의 안정성, 투명성 및 지배구조의 개선, 거대 퇴직 연기금에 의한 자본시장의 활성화, 국민연금제도정부담의 완화 그리고 은퇴 생활의 3층보장체계 완비 등 사회경제적 효과를 기대하며 도입 준비 단계에서부터 퇴직연금시장의 활성화를 위한 제반 노력을 경주해 왔다.

최근 노동부 발표에 의하면, 2006년 말 현재 퇴직연금제도를 도입한 사업장 수는 16,291개로 적응대상 사업장의 약 3.5%이며, 이 중에서 10인 미만 영세 사업장이 70%수준에 이르고 있는 실정이라고 한다. 특히, 적립금 규모는 약 7,524억 원으로 시행 1년차 예상 적립액의 6.3%수준에 머물고 있다1). 이러한 조기 연착륙의 어려움은 중간정산제도(97년 3월 도입)의 보편화, 기존 퇴직 금융시장의 80%이상을 차지하고 있는 퇴직보험을 퇴직연금제도로 조기 전환할 경우 현행 감독규정상 미정산된 계약자이익배당준비금에 대한 배당권한 소멸문제 등 제도적·실무적 장애요소가 내재하기 때문이라고 판단된다.

또한 운용관리업무를 담당하고 있는 금융기관의 퇴직연금컨설팅업무의 전문성 문제, 퇴직연금 전산 시스템 운용 문제, 전문인력 확보 및 양성 문제 그리고 퇴직연금제도를 퇴직보험의 보완제로 판단하는 근로자의 인식문제 등 인적, 물적난제가 더욱 어렵게 만든 측면도 있다.

1) 퇴직연금시장의 규모는 초기단계인 2006년에 낙관적으로 약 12조 시장으로 전망되었다. 2010년 기준으로 보험개발원 67조 시장, 삼성생명 45조 시장, 증권연구원 69조 시장, 우리은행 48조 시장 등으로 예측하고 있으며 제도가 성숙단계로 진입하는 2015년 이후는 약 189조 시장으로 예측되고 있다.
한편, 2004년 12월 29일 국회통과, 2005년 1월 27일 공포와 동시에 12월 1일 시행 등으로 《근로자퇴직급여보장법(Employee Retirement Benefit Security Act: ERBSA)》(이하 간단히 근퇴법이라 함)이 조속히 시행됨에 따른 퇴직연금시장 참여자들의 여러 이해관계의 갈등구조(표 I-1 참조), 기존 퇴직금융시장을 퇴직연금시장으로 전환하는 여러 단계 등에 대하여 명쾌한 표준 가이드라인을 적시에 제공하지 못한 측면도 있다고 사료된다. 따라서 정부 관리기관(노동부, 금감원 등) 중심으로 제도적 보완, 시행 표준규정 등을 현안의 긴박성 여부에 따라 순차적으로 준비하고 있는 것 또한 사실이다.

물론 1830년대에 이미 퇴직연금제도가 활성화된 서구유럽과 비교하면, 연금 라이프사이클(life cycle of pension schemes), 더 나아가 제도의 정착성 등의 초기단계이며출발부터 사회경제적 효율성을 기대하기는 어렵다. 따라서 우리의 실제적 전문성 또한 시작 단계라는 점이 본 연구를 수행하게 된 하나의 계기가 되었음을 부정할 수 없다. 특히 확정급여형(defined benefit pension schemes: DB) 퇴직연금 운용관리의 경우는 더욱 그렇하다.

을 반영하여 우리의 전문성을 배가시키고 아울러 국제적 정합성을 우리의 환경에 맞게 적용시킬 수 있는 학문적 발전 필요성을 인식시키고자 한다.

<표 Ⅰ-1> DB 퇴직연금시장 참여자간의 이해관계모형3)

<table>
<thead>
<tr>
<th>이해관계자</th>
<th>주요 관심 사항 설명</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>기업</td>
<td>연기금 지급능력 여부 (Pension Fund Solvency?) ⇔ 파소적립위험 (Under-Funding Risk)</td>
<td>적립률이 불충분한 경우 기업의 파산위험에 노출되므로, 연금 재정이 얼마나 독립적·항시적으로 안전성이 확보되는지 여부</td>
</tr>
<tr>
<td>사용자</td>
<td>기여율 안정성 여부 ⇔ 기여위험</td>
<td>기업의 재정적 적립부담 정도가 사전에 예측한 수준(총임금의 일정%)에서 장기적 지속 여부.</td>
</tr>
<tr>
<td>국세청</td>
<td>연기금 잉여금 규모 (Pension Fund Surplus?) ⇔ 과대적립위험 (Over-Funding Risk)</td>
<td>적립기간에 부여된 자산운용수익(이자수익 및 자본수익)의 비과세혜택을 영업이익은닉처(tax haven)로 악용 방지 차원</td>
</tr>
<tr>
<td>감독기관</td>
<td>연기금 지급능력 여부 (Pension Fund Solvency?) ⇔ 파소적립위험</td>
<td>근로가입자의 수급권 보호, 퇴직연금제도의 건전 육성, 자본시장의 발전 등의 관점에서 연금재정의 적정성을 검증하는 차원</td>
</tr>
<tr>
<td>주주</td>
<td>연기금 가치 정도 (Pension Fund Value?) ⇔ 파소적립위험</td>
<td>양여금/부족금 여부가 기업의 경제적 가치(EV)에 얼마나 영향을 미치는지 여부(특히, M&A 상황에서의 주가변동 여부)</td>
</tr>
<tr>
<td>수탁금융기관</td>
<td>연기금 지급능력 및 기여율 안정성 조율 여부</td>
<td>퇴직연금규약의 신의성실 실천을 위해 운용관리업무는 노사 모두의 이해관계를 합리적으로 조율하여야 함.</td>
</tr>
</tbody>
</table>

나. 연구의 주요 목적

금융기관별 연금운용형태별(확정급여형(DB), 확정기여형(DC), 개인퇴

3) 성주호(2005) 수정 보완.
직계좌(IRA 등) 특성에 따라 수행해야할 전략도 차별적이어야한다. 합리적 DB 운용관리를 위한 현학적 접근이 많이 진행되었고 아울러 진행되고 있지만, 본 연구는 Haberman et al.(2003)의 연구 결과에서 출발한다고 볼 수 있다. 그들은 DB 운용관리전략을 투자전략(investment strategy), 적립전략(funding strategy) 및 급여전략(benefit strategy)으로 대별하고 이들 각각이 상호 잠재적 충돌현상이 존재하지 않도록 관리되어야 함을 강조하고 있다. 그러나 급여전략은 현실적으로 근퇴법상의 논제이므로 배제하고 투자 및 적립과 관련된 전략 수립에 연구의 초점을 둔다. 이상의 논의를 종합적으로 정리하면, 아래의 <그림 I-1>로 요약할 수 있다.

<그림 I-1> 주요 위험 및 관리 전략

본 연구의 주요 목적은 아래에 상술한 바와 같이 궁극적으로 연구 주제를 구현하는 함에 있으며 아울러 상기 <그림 I-1>를 구체화하는 것이다.

4) 저자의 오랜 연구 및 강의 과정에서 작성된 그림이며, 의미 전달의 명확성 차원에서 한글화하지 않았음.
대표적 개별적립방식인 예측급부단위적증방식(PUM), 가입연령방식(ENT), 퇴직급여추계액방식(ATM) 각각의 차별성을 검증한다. 특히 IASB에서는 퇴직연금 재원조달방식으로 PUM만을 사용할 것으로 권고하고 있다. 따라서 우리는 PUM을 우리상황에 적합 시키는 논제에 초점을 둡니다. 아울러 연령별 인구구조의 특성을 설정하여 개별적립방식의 수치 해석적 차별성을 보이고자 한다.

연기금 자산의 투자전략 최적화를 모색한다. 물론 상기 <그림 I-1>에서 제시하고 있는 바와 같이 자산할당전략으로 그 의미를 집약할 것이다. 그 논리적 배경에 대한 설명은 뒤에서 다룬다(<그림 II-1> 참조).

연기금 재정의 손익 분석을 위한 계리적관점과 회계적관점 각각에 대해 살펴보고 근본적 차이점에 대해 검토한다. 이를 기반으로 연금 재정의 손익 위험을 기여위험과 지급능력위험으로 대별하고 합리적 측도를 각각 제시한다.

연기금 평가이율(valuation interest rate) 설정의 최적화를 모색한다. 이는 단일률로 설정될 것이며 따라서 시산이율, 적립이율 혹은 부리이율 등 예정이율로 그 의미를 부여할 수 있다. 또한 예상투자수익률의 변동성을 사전적으로 관리하는 변수이므로, 운용관리 업무의 핵심적 역할을 수행한다.

손익 분석 결과로 도출되는 잉여금/부족금의 최적으로 상각하는 전략을 수립한다. 이를 위해 도입된 방식은 이연상각방식이다. 결론적으로 본 연구의 궁극적 목적은 퇴직연금제도의 연착륙을 도모하는 정부당국의 제도적 위치에 상응하는 금융기관별 특성화 전략의 표준적 가이드라인을 제공함에 있다. 이러한 금융기관별 사전 준비 작업은 시장경쟁의 효율성을 제고할 것이며, 아울러 선진국에서처럼 공사연금의 역할 대체 효과를 가져올 것으로 기대 된다.

5) 근본 배경은 성주호(2002)에서 언급하고 있는 것처럼, IAA와 IASB간의 견해 차이를 PUM에서 접촉한 것으로 설명할 수 있음.
6) 2002년 6월 미국 연방준비금위원회(Federal Reserve Board) 보고 자료에 의하면,
2. 연구방법

공적 및 사적연금제도에 있어서, Black(1992)이 언급한 것처럼, 연기금의 항시적 지급능력(continued solvency)과 가입자간 항시적 형평성(continued goodwill) 문제는 DB 운용관리 업무의 주요 핵심과제이다. 여기에서 후자의 경우는 기여율의 변동성에 기인한 적립율(funded ratio)의 불안정성에 기인하는 것으로 설명할 수 있을 것이다. 왜냐하면, 적립율이 근로자별로 퇴직시점마다 와소 혹은 과대 적립된 경우 현행 근로연금법상 적립비율에 따라 퇴직급여가 지급되므로 가입자간의 보장 퇴직급여 관점에서 차별성 문제가 발생하기 때문이다. 따라서 우리가 주요 관리대상 위험으로 설정하고 있는 기여위험과 밀접한 관련이 있을 수 있다. 물론 DC 운용관리 업무는 투자 전략의 신중성(prudent man rules)이 확보된다면, 근로가입자가 수반되는 제반 위험을 부담하기 때문에 지급능력과 형평성문제는 야기되지 않는 것으로 볼 수 있다.

본 연구는 DB운용관리 업무의 안정성을 위협할 수 있는 제반위험을 검토하고 이러한 위험을 계량적으로 최적화하는 전략 구축 모형을 제시한다. 또한 <표 I-1>에서 설명한 바와 같이 다양한 이해관계자들의 주된 관심을 합리적 조율하는 총량적/통합적 관리 모형을 제시함에 주요 의미를 두고자 한다. 따라서 본 연구는 퇴직연금재정의 안정성 및 연기금의 지급능력의 목표값 설정을 우선 고려한다. 물론 이들은 다양하게 개발된 적립방식에 의해 제공된다. 다음으로 예상투자수익률을 확률변수로 설정하여 통계적 현금흐름 구조(stochastic cash flow structure)를 수리적으로 모

사적연기금액(value of private pension funds):공적연기금액(value of public pension funds) ≈ 65:35이며, 특히 생보자산의 약 45.5%가 (확정급여형)퇴직연금에 의해 형성되고 있음을 보여주고 있다. 선진 유럽의 경우도 공사연금 규모를 6:4에서 4:6으로 전환하는 정책적 노력을 경주하고 있다.
델링하고 각 주요 관리 변수들(controlling variables)간의 상호 관련성을 먼저 규정한다. 다음으로 운용관리업무의 퇴직연금 컨설팅 우선순위에 따라 안정적 운용 관리 전략(stable pension management strategies)을 단계적으로 수립한다.

결론적으로, 투자위험에서 야기되는 기여위험 및 지급능력위험을 아래의 <그림 I-2>처럼 최적 전략을 순차적으로 수립함으로써, 최종적으로 본 연구의 제목으로 설정한 손익위험 관리 전략(stable risk-based pension management)을 수립하는 절차를 따른다.

<그림 I-2> 안정적 손익위험 관리도
3. 근퇴법상의 급여설계

본 절은 향후 논의의 편의상 현행 근퇴법상에서 규정하고 있는 연금 운용과 관련된 급여설계 관점을 간략히 설명한다. 일반적으로 전략 수립은 적립기간과 연금수령기간을 모두 고려하여 수립하지만, 우리의 경우는 적립기간과 연금수령기간이 분리 설정되어 있다. 따라서 본 연구는 운용관리 전략 수립 과정은 적립기간에 초점을 두고 있다.

가. 가입근로기간 중 일시금설계

현행 근퇴법상에서 규정하고 있는 DB퇴직연금제도의 급여설계는 퇴직시점에 연금(pension)을 지급하는 형식이 아니고, 퇴직일시금(lump sum benefit at retirement)을 지급하는 것을 주요 골격으로 하고 있다. 관련된 주요사항은 아래의 <그림 I-3>으로 요약 정리된다.

<그림 I-3> DB 퇴직연금규약상의 연금채무 분류(GML vs. VL)

주1: GML은 현행 근퇴법상에서 규정하고 있는 최소 퇴직금 적립채무를 의미한다. 즉, 근퇴법 제12조 제4항(급여수준에 관한 사항) "가입자의 퇴직일을 기준으로 산정한 일시금의 금액이 계속근로기간 1년에 대하여 30일분의 평균임금에 상
당하는 금액 이상이어야 한다”라는 규정을 만족하는 연금채무액이다.
주2: VL은 근로법상의 급여수준이 최소 규정에 불과하므로, 기업의 사내 복지 차원에서 노사 합의에 의해 추가로 연금 급여를 설계 할 경우에 발생하는 임의 연금채무액을 의미한다. 즉, $VL \geq 0$.
주3: AL은 기업의 총 연금채무로 $AL = GML + VL$ (단, $VL \geq 0$).

나. 퇴직 후 연금급여설계 관점

근로법에 규정된 최소 퇴직일시금의 활용 여부에 부여된 선택권은 다음과 같이 분류될 수 있다. 즉, 퇴직자는 아래와 같이 크게 2가지 상황에 대하여 개인의 효용 극대화 관점에서 선택권을 행사하게 될 것이다.

◆ 적격요건 충족이후 옵션(post-qualification option)
 • 연금전환옵션(annuity purchase option)
 • 변액연금(variable annuity)
 - 물가연동연금(inflation-linked annuity)
 - 사망지수연동연금(mortality-linked annuity)
 - 실적배당형연금(equity-linked annuity), …
 • 정액연금(level/fixed annuity)
 • 일시금옵션(lump-sum withdrawal option)
 • 혼합옵션(mixed option)
 : 연금전환옵션과 일시금옵션의 가중결합(convex combination)
◆ 적격요건 충족이전 옵션(pre-qualification option)
 • 개인퇴직구좌옵션 IRA option
 • 일시금옵션(lump-sum withdrawal option)

여기에서, 적격요건은 근로법 제12조 제6항에서 다음과 같이 정의되고 있다. 즉, 연금수령가능연령(pensionable age)은 55세 그리고 최소 근로기여기간(min. service period contributed by the employer)을 10년을
충족한 경우 적격요건이 완성된다.

연금전환옵션은 정액연금(fixed annuity) 혹은 변액연금(variable annuity)을 개인연금시장 혹은 단체개인연금시장에서 구입하는 것을 의미한다. 노후 소득보장 측면에서 물가연동연금이 권장되어야 하지만 영국, 일본, 미국 등 선진국에서 이미 활용되고 있는 물가연동채권(inflation-linked bonds)이 국내에서는 발행되고 있지 않는 한계로 금융권의 운영위험이 잠재되어 있어 실제 운용은 어려울 것으로 판단된다. 이러한 이유에 더하여 물가가 안정화 되어 있는 서구 선진국에서도 초기 연금액이 상대적으로 많다는 이유로 정액연금의 선호도가 높은 현실을 감안한다면, 우리의 경우도 정액연금이 보편적 연금 지급형태로 자리 잡을 것으로 쉽게 예측할 수 있다. 일시금출은 퇴직소득 전체를 개인의 투자성향에 따라 이자소득, 배당소득, 부동산소득 등을 창출할 수 있는 투자자산으로 전환함을 의미한다. 혼합옵션은 개인의 필요에 따라 일정 부분은 일시금으로 수령하고 나머지에 대해서 연금을 구입하는 연금전환옵션과 일시금출의 혼합형으로 이해할 수 있다. 마지막으로, 연금으로 전환이 불가한 조기퇴직 연령(55세 미만) 혹은 55세 이후 일정 연령부터 연금을 수령하는 거치연금(deferred annuities) 등을 선호하는 퇴직자 등은 개인퇴직구좌를 지속적으로 유지하는 전략을 선택할 수 있다.

7) 선진국의 예에서도 연금전환옵션이 가장 보편적이지만 부분적으로 현금인출을 허용하는 혼합옵션이 적용되기도 한다. 예를 들어, 영국의 경우는 초년도 연금액의 2.25배까지 현금 인출할 수 있었다. 물론 일시금 출선도 1995년에 세로이 도입되었으나, 다음과 같은 제약을 두고 있다. 첫째, 일시금출선에 의한 소득이 연금전환에 의한 소득 수준의 35%수준 이상이어야 함을 증명하여야 한다. 둘째, 일시금출선의 유효기간은 퇴직자 연령 75세까지이며, 이후는 반드시 잔여퇴직자 산을 생명연금 구입으로 사용하여야 한다.
II. 손익위험 관리모형의 가정 및 해설

1. 개요

서론에서 설정한 본 연구의 5가지 주요 목적을 수행하기 위한 기본 가정을 설정한다. DB 퇴직연금제도는 사회경제적 변화, 해당 사업장의 (재무적, 인구구조적) 환경 변화, 관련 법규 및 (공⋅사 연금관련) 정책의 변경, 인구 통계적 변화 등이 상호 복합적으로 관련되어 장⋅단기적으로 연금 재무상태에 영향을 주는 일종의 복잡계(complex world)이다. 그러므로 본 연구의 목적을 명시적으로 수행하기 위해서는 주요 관리변수들을 중심으로 형성되는 협의의 가상 복잡계를 구성하고 분석할 필요성이 있다. 일반적으로 복잡한 현실세계를 주요 관심사항을 중심으로 단순화하고 수리 모형화를 통하여 분석함으로써, 유용한 시사점을 도출하는 접근법은 경제학을 비롯한 계량적 분석을 요하는 제반 학문 분야에서 널리 채용되고 있는 효율적 방법론이다. 특히 이와 같은 단순화된 가상모형을 설정하고 분석하는 대표적 시발점으로 Trowbridge(1952)을 언급할 수 있다. 1980년대 말부터 학문적으로 성숙단계에 접어든 연금계리분야(pension science)에서는 기여위험과 지급능력위험을 주요 관리상 위험으로 설정하고 연금 적립 및 재정의 안정성을 확보하는 학문적 업적 또한 이러한 모형화에 기초하고 있다. 대표적으로, Cairns(1995, 1996, 8) 참고로 이를 지지하는 주요 연구자들의 견해 원문은 다음과 같다. Haberman & Sung(2001), “As with any model of a real world problem, it is necessary to make a number of simplifying assumptions in order that we may focus effectively on the key features of the problem to be solved.” 그리고 Huber(1996), “As all models are controversial, an alternative approach is to select the most general mathematically tractable model that is broadly consistent with financial economic theory. Until an empirically adequate and theoretically consistent model is discovered, these hypothetical models are often the most pragmatic alternative.”
다음에서 다룰 모형화 가정 I를 통하여, 우리는 기여위험과 지급능력 위험을 관리하는 목표값을 설정할 것이다. 그리고 다음 절에서 모형화 가정 II를 통하여, 본 연구의 본론에 해당하는 제IV장 및 제V장에서 궁극적으로 다루게 될 지급능력위험 관리(solvency risk management)와 기여위험 관리(contribution risk management)를 수행하기 위한 가상 환경을 설정할 것이다.

2. 모형화 가정 I

현행 근로법상에서 규정하고 있는 DB퇴직연금제도의 급여설계는 퇴직시점에 퇴직일시금을 지급하는 것을 주요 골격으로 하고 있다. 아래의 가정들은 제1-1-나절에서 본 연구의 첫 번째 목적 ㉠을 수행하기 위한 가정들로서, 적립 기간 중에 관리 목표값(즉, 표준부채(actuarial liability: 이하 AL) 및 표준기여액(normal cost: 이하 NC)을 설정하기 위한 계산기초(actuarial valuation basis)에 해당한다. 즉,

(A1) 신규 근로가입자는 EA세(가입연령)에 DB퇴직연금제도에 가입하여 NRA세(정상퇴직연령)에 도달하여 정년퇴직한다.

(A2) 연금재정평가(pension valuation)는 단위평가기간(t, t + 1)마다 정규적으로 행해진다.(즉, 1년을 기본 단위로 설정함)

(A3) 모든(자산 및 부채 관련) 현금흐름(all transactions)은 단위기간 초에 발생하며 단위기간 내에서의 변화는 없다.

(A4) 임금상승률(salary inflation rate)은 연간 h로 연 중 일정하다(단, 연공서열지수(salary scale index)은 반영 안함)

(A5) 전 단위평가기간에 단일평가이율(single valuation discount rate) i_v 을 적용한다.
(A6) 급여설계는 근퇴법상의 최소법정 퇴직일시금만을 설정한다.

(A7) 근로기입자의 인구 통계적 특성은 항상적 연령 분포 구조(stationary active age structure)를 갖는다.

(A8) 모든 화폐단위(하, $, 등)는 전 단위기간에 걸쳐 모두 동일한 화폐 측도(즉, 명목(nominal terms) 혹은 실질(real terms))를 사용한다.

다음 절에서는 이들 가정들에 대한 실무적 해석 및 기본 모형에 대해 살펴보기로 한다.

3. 가정 I 해설 및 기본 모형

다음으로 가정(A2)의 정규적 평가는 연금체계의 안정성을 확보하기 위한 피드백 관리의 기본 전체로 작용한다. 통상적으로 1년을 기준으로 평가함이 일반적이지만(예: 미국) 영국의 경우 3년마다 1회씩, 일본의 경우 5년마다 최소 1회이고 IFRS 19기준은 중요한 정정사유 발생시 수행함을 원칙으로 하고 있다. 이를 통하여 필요시 적립전략, 투자전략,
계산기초 등을 수정 보완하는 합리적 절차가 행해지게 된다. 물론 상기의 원칙들은 법적 강제되는 최소기준으로서, 중요한 평가사유 발생시(제도 변경, 계산기초 변경 등) 재평가는 필수적 요건이다. 현행 근퇴법상 규정은 불명확하나 내용을 살펴보면, 매년 1회 이상을 규정하고 있는 것으로 추론된다. 왜냐하면 기타 여러조항에서도 유추 가능하지만 대표적으로 근퇴법 제20조 제5항에서 퇴직연금사업자는 매 사업년도 종료후 3개월 이내에 당해 연도 적립금 운용 현황 및 운용방법별 현황을 사용자, 노동부장관 및 금융감독위원회에 보고서로 제출하도록 규정하고 있기 때문이다.

다음으로 가정(A3)은 사전적립방식(pre-funding methods)에 근거한 것이다. 또한 가정(A1) 및 (A6)와의 연계성 차원에서 급여액 발생은 정상퇴직 직후 시점 즉, 다음 기간 조에 즉시 발생함을 의미한다. 현행 근퇴법 시행령 제5조 제1항에서 급여액의 지급은 퇴직사유 발생 후에 지급하도록 규정되어 있음에 근거한다.

가정(A4)의 수학적 의미를 살펴보면 현재 시점(t)에서 임의의 근로가 입자의 연령(EA ≤ x ≤ NRA - 1)에 대하여, S(x, t)를 “현재 시점(t)에서 근로가입자의 도달연령(attained age) x세 시점부터 도달연령 x+1세 사이에 적용되는 연 임금(annual salary)”이라고 정의하면,

\[
S(x, t) = S(x-1, t-1) \cdot \frac{s_x}{s_{x-1}} \cdot \frac{W(t)}{W(t-1)}
\]

\[
= S(x, t-1) \cdot \frac{W(t)}{W(t-1)}
\]

(A4) 적용 \(S(x, t-1) \cdot (1+h) \) (II-1)
여기에서, \(s_x = x \)세의 연공서열지수, \(\frac{W(t)}{W(t-1)} = (t-1, t) \) 단위평가기간의 임금상승률을 의미한다.

가정(A4)로부터 연공서열지수 \(s_x = 1.0, \forall x = EA, EA+1, ..., NRA-1 \)이다. 따라서 당해연도 가입근로자간의 임금 차별성이 없으므로 임의의 시점 \(t \)에 대해서,

\[
S(x, t) = S(t), \ \forall x
\]

특히, 경계연령(boundary age) \(x = NRA \)에 대해서 \(S(NRA, t) = S(t) \).

또한 임금의 동태성장모형(dynamic growth model)은 근로가입자별 도달연령(x)과는 무관하게 아래의 1차 재귀식(first-order recursive equation)으로 표현될 수 있다. 즉,

\[
S(t) \cdot (1 + h) = S(t+1), \ \forall t
\]

그러므로 현 평가시점 \(t \)에서 \(x \)세 근로가입자의 현재임금 \(S(x, t) \)와 정년퇴직시점의 기대최종임금(expected final year's salary) \(EFS(x, t) \)와의 관계식은 다음과 같이 표현된다.

\[
EFS(x, t) = S(x, t) \cdot (1 + h)^{NRA-1-x} = S(NRA-1, t + NRA-1-x)
\]

9) \{ W(t) : t=0,1,2,... \}, 평가시점 \(t \)에서 측정된 임금지수 값(value of wages index at time \(t \))으로 정의된다(기준년도 \(W(0) \)는 주어짐). 수리적으로는 물가상승률 및 기업 생산성 등 내외적 경제요인에 의해 영향을 받는 salary inflation stochastic process를 의미한다(Wilkie(1995) 참고).
다음으로, 기대최종임금의 동태적 전이특성(transition properties)에 대해서 살펴본다.

첫째, 연령 및 평가시점별 전이특성은 아래에서 알 수 있듯이 항상적임을 알 수 있다. 즉,

\[
EFS(x + 1, t + 1) = S(x + 1, t + 1) \cdot (1 + h)^{NRA-1-(x+1)} \quad \text{(II-5)}
\]
\[
= [S(x, t) \cdot (1+h)] \cdot \left[\frac{(1 + h)^{NRA-1-x}}{1+h} \right] \\
= EFS(x, t), \quad \forall x, t
\]

둘째, 도달연령별 기대최종임금의 전이특성은 아래와 같이 표현될 수 있다. 즉,

\[
EFS(x + 1, t) = S(x + 1, t) \cdot (1 + h)^{NRA-1-(x+1)} \quad \text{(II-6)}
\]
\[
= S(x, t) \cdot \frac{(1 + h)^{NRA-1-x}}{1+h} \\
= \frac{1}{1+h} \cdot EFS(x, t), \quad \forall x, t
\]

단, 경계연령에서 \(EFS(NRA-1, t) = EFS(NRA, t)\).

마지막으로, 평가시점별 기대최종임금의 전이특성은 아래와 같다. 즉,

\[
EFS(x, t + 1) = S(x, t + 1) \cdot (1 + h)^{NRA-1-x} \quad \text{(II-7)}
\]
\[
= S(x, t) \cdot (1+h) \cdot (1 + h)^{NRA-1-x} \\
= (1+h) \cdot EFS(x, t), \quad \forall x, t
\]

단, 경계연령에서 \(EFS(NRA, t+1) = (1+h) \cdot EFS(NRA, t)\).

상기 식(II-5) ~ (II-7)은 제III장에서 다룰 표준부채(AL)의 동태적 전이특

성의 도출하는 과정에 활용될 것이다.

한편, 항상적 인구구조 가정(A7)의 수리적 해석은 다음과 같다. \(N(x, t) \)를 "현시점(t)에서 도달연령(\(EA \leq x \leq NRA - 1 \))의 총 근로가입자 수" 라고 정의하면 평가시점과는 무관함을 알 수 있다. 즉,

\[
N(x, t) = N(x, t + 1) = N(x), \quad \forall t = 0, 1, 2, \ldots \quad (I I - 8)
\]

따라서 임의의 평가시점에서의 가입근로자들의 총임금(total pay roll) \(TP(t) = \sum_{x = EA}^{NRA} N(x, t) \cdot S(x, t) \) 이다. 여기에 가정(A4)와 (A7)를 적용하면 다음의 관계식을 도출할 수 있다. 즉, 주어진 \(TP(0) \)에 대하여,

\[
TP(t + 1) = (1 + h) \cdot TP(t) = TP(0) \cdot (1 + h)^{t + 1} \quad (I I - 9)
\]

이상의 논의 과정에서 우리는 모형화 가정들이 현실적 적합성이 있는 반면, 그 한계점 또한 내재할 수 있다. 그러나 모형화 가정 자체는 일반성을 해하지 않는 범위에서 설정되고 있으므로 이러한 단점을 극복하기에 충분할 것으로 사료된다. 이는 다음에서 다룰 (정태적 및 동태적) 표준부채모형, 표준기여액모형 그리고 이를 활용하여 제시될 수치에서 등을 통하여 명확해질 것이다.

4. 모형화 가정 II

아래의 가정들은 제1-1- 나절에서 본 연구의 목적으로 설정한 ①, ②, 그리고 ③을 수행하기 위한 ‘모형화 가정I’에 추가적으로 고려하여야 할 연기금 자산(pension fund assets)에 관한 사항들이다.

(B1) 투자수익률을 제외한 기타 인구통계적, 경제적 예측치들은 현실
세계에서 100% 실현된다.

(B2) 평가를 위한(재무적, 인구통계적) 계산기초(actuarial financial & demographic valuation basis)는 시간에 대해 불변이다.

(B3) 연기금 자산은 공정가액(혹은 시가) \(F(t) \)로 평가한다.

(B4) 투자기간 \((t, t+1)\)의 연기금 포트폴리오의 예상투자수익률 \(i_{t+1} \)은 2개 자산모형(two-asset model)에 의해 다음과 같이 결정된다.

<table>
<thead>
<tr>
<th>투자기간 ((t, t+1))</th>
<th>무위험자산 (riskless assets)</th>
<th>위험자산 (risky assets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>투자구성비</td>
<td>(1 - \alpha)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>예상투자수익률</td>
<td>(r) ((r > 0))</td>
<td>(r + \epsilon_{t+1}, \epsilon_{t+1} \sim iid N(\mu > 0, \sigma^2 < \infty))</td>
</tr>
</tbody>
</table>

(B5) DB 퇴직금제도를 시행하고 있는 사용자는 합리적 위험회피형 투자자이며, 운용관리업무를 수행하는 금융기관은 평균-분산 기준 (mean-variance criterion)에 의해 자산배분 전략들을 제시한다.

(B6) 연기금 평가 결과로 발생하는 양여금/부족금은 보조적립방식인 이연상각방식(spread pension funding method)을 적용한다.

(B7) NC, AL를 포함한 연기금 자산 관련 현금흐름의 회계 정보상의 편차 및 지연(accounting bias and lags)은 없다.

5. 가정 II 해설 및 기본 모형

상기 가정들은 모두 연기금 운용관리 과정에서 현실적 가치를 두고 설정된 본 연구의 전제조건들이다. 이를 통한 모형 분석의 주요 결과들이 연기금 운용관리 측면에서 상당부분 현실적 적합성이 있을 것으로 기대된다. 왜냐하면 모형화 가정의 현실적 타당성 검증과정을 통하여 이를 확인할 수 있기 때문이다.

우선, 가정(B1)의 현실적 적합성은 Thornton & Wilson(1992)의 실증
분석 결과에서 잘 나타나고 있다. 즉, 예상투자수익률이 지급능력의 변동 더 나아가 기여율의 변동에 가장 많은 영향을 미친다는 연구결과에 기반을 두고 있다.

다음으로 연기금 자산배분 전략을 수립하는 전제조건으로 제시되고 있는 가정(B4)에 대해 살펴보기로 한다. 첫째, 연기금 투자수익률의 약 92%가 자산할당전략에 의해 결정됨을 반영한 가정으로서, 그 현실적 의미를 찾을 수 있다.(아래의 <그림 II-1> 참조) 둘째, DB 퇴직연금제도 재정의 건전성에 대한 무한책임을 담보하고 있는 사용자와 운용관리업무를 수행하는 퇴직연금사업자는 상시적으로 적립금 운용전략에 대해 검토하게 될 것이다. 이와 같은 관점에서 살펴보면 가정(B4)은 전체 단위 투자기간 동안 포트폴리오의 변경이 없는 즉, 장기적 포트폴리오 구 성비를 결정하는 정태적 자산할당전략(static asset allocation strategies)을 설정한 것으로 그 의미를 둘 수 있다. 물론 정기적으로 포트폴리오 포지션변경을 허용하는 운용전략을 설정하는 경우 즉, \(\alpha_t: t=0, 1, 2, \ldots \)인 동태적 자산할당전략(dynamic asset allocation strategies)을 다루는 것이 현실적 적합성이 상대적으로 더 있을 수도 있다. 하지만, 거래 기금의 포지션을 자주 변경한다는 것은 그에 따른 추가 거래비용 문제를 무시할 수 없는 현실적 한계점이 있음을 주지할 필요성이 있다. 또한 연기금의 장기 투자성을 고려하여 본 연구에서는 안정적 연기금 운용 전략을 수립하는 것이 주된 목적이므로, 정태적 전략만을 다루도록 한다. 우리의 가정을 뒷받침하는 최근의 연구결과로 Black et al.(2001)을 언급할 수 있다. 그들은 장기투자성과 평가관점(약 40년)에서 정태적 전략이 동태적 전략보다 상대적으로 우수하다는 시뮬레이션 결과를 제시하고 있다. 한편, 동태적 전략에 더 많은 중요성을 두고 있는 연기금 운용관리자의 경우는 대표적으로 Haberman et al.(2003)의 최근 연구결과를 참조하면 충분할 것으로 사료된다. 그들은 중 단기 투자성과 평가관점(약 6-15년)에서 동태적 전략이 상대적으로 우수하다는 시뮬레이션 결과를 제시하고 있다.
다음으로 가정(B4)에 언급하고 있는 예상투자수익률은 아래와 같이 모형화 된다. 즉,

\[i_{t+1} = (1-\alpha) \cdot r + \alpha \cdot (r + \epsilon_{t+1}) = r + \alpha \cdot \epsilon_{t+1} \] \hspace{1cm} (II-10)

여기에서, 확률적 시계열 \(\{ \epsilon_{t+1} : t = 0, 1, 2, \cdots \} \)는 랜덤워크(random walk process)를 나타내고 있으며, \(\epsilon_{t+1} \)는 (t, t+1) 기간의 위험자산 투자에 따르는 기대투자수익률의 변동성을 표현하고 있다.

예상투자수익률에 대한 추가 정보로서 위 식(II-10)에 대하여 평균-분산을 구하면,

\[E(i_{t+1}) = r + \alpha \cdot E(\epsilon_{t+1}) \quad \text{vs.} \quad Var(i_{t+1}) = \alpha^2 \cdot \sigma^2 \] \hspace{1cm} (II-11)

여기에서 \(\alpha \cdot \mu \)는 연기금 자산배분에 의해 투자시점에서 이미 결정된 완성포트폴리오(complete portfolio)에 대한 예상투자수익률의 위험프리미엄(risk premium)을 의미한다. 이는 설정된 완성포트폴리오의 위험 지수 (투자수익률 변동성 지수) \(\alpha^2 \cdot \sigma^2 \)에 대한 보상으로 그 재무적 의미를 부여할 수 있다.

한편, 현실적 관점에서 연기금 투자자는 위험 회피적이므로 양(+)의 위험프리미엄이 없으면, 위험자산에 대한 투자 매력이 없을 것이다. 이 를 반영하여 가정에서 \(\mu > 0 \)임을 명시하였다. 또한, 자산 구성비 \(\alpha \)에 대하여 \(0 \% < \alpha < 100\% \)라는 제약식을 부여하여 현실적 타당성이 있다. 왜냐하면, 성주호(2004)에서 설명한 것처럼 정상퇴직시점이 가까운 가입근로자의 연금재원은 비교적 현금유동성이 높은 국공채 투자가 필요한 반면, 향후 정상퇴직까지 상당부분 근로기간이 요하는 가입근로자
의 연금재원은 주식투자가 수익률 관점에서 효율적이기 때문이다. 결론적으로 포트폴리오 투자전략에서 대출포트폴리오(lending portfolio)를 구성함을 의미한다.

마지막으로 가정(B5), 가정(B6) 각각은 최적 자산배분전략 및 최적 적립전략을 수립하는 뿐만 아니라 기본적 전제조건을 제시하고 있는 것이 다. 구체적 적용 방법에 대해서는 각각 제IV장과 제V장에서 상술한다.

<그림 II-1> 예상 투자수익률을 결정하는 주요 요인들10)

10) 미국 펀드 수익률을 결정하는 요인에 대한 실증분석 결과(Schneider et. al(1997) p.48 참고)
III. 손익위험 관리 목표값 설정

1. 개요

여기에서 우리는 모형화 가정 1을 적용하여 현재 관심의 대상으로 부각된 PUM, ENT 및 ATM 개별적립방식 각각의 차별적 특성에 대해 모형화를 통하여 그리고 수치 예시를 통하여 비교 분석한다. 이는 서론에서 언급한 본 연구의 주요목표 ㉠에 해당하며, 손익위험(기여위험 및 지급능력위험 등)을 관리하기 위해 반드시 설정해야 관리 목표값(target values for optimal controls)들을 제시한다. 따라서 이번 장은 본 연구의 본론에 해당하는 제IV장 및 제V장으로 연구를 진행하기 위한 준비 단계이다. 물론 다음 절에서 다루게 될 모든 관리 목표값 변수들은 확정변수(deterministic variables)들로서 명확한 관리목표 가이드라인을 제시함을 인지할 필요성이 있다.

2. PUM 적립방식

상기 제II장에서 설정한 모형화 가정 1에 근거하여 우리 퇴직연금제도 하에서 PUM 적립방식을 어떻게 적용할 것인지에 대해 연금계리적 측면에서 수리 모형화한다11).

PUM 적립방식의 중요성은 주지하는 바와 같이 1990년대에 접어들면서 영미 등 퇴직연금시장의 활성화를 선도하는 선진국들을 중심으로 적립의 안정화(stability) 및 급여지급의 안전화(security)를 강조하는 사회적 변화추세를 합리적으로 잘 반영하고 있다는(회계사 및 계리사 등) 전문가집단의 인식이 확산됨에 기인한다.

가. 표준부채 AL 모형

공극적으로 PUM 적립방식은 기대최종임금 $EFS(x, t)$을 기준으로 지급능력 확보(fund solvency)에 우선순위를 두고 개발되었다. 즉, 일종의 비연속성채무(discontinuance liabilities)인 AL을 먼저 산정한 후, NC를 산정한다. 따라서 산정되는 AL은 회계학적으로는 (이미 잠재적으로 발생한) 예측급여채무(projected benefit obligations)에 해당한다.

먼저, PUM 적립방식의 기본원리를 설명하고, 제II장 모형화 가정 I에서 이미 설정한 기본 모형을 중심으로 PUM 연금모형을 순차적으로 유도할 것이다.

현재 시점(t)에서 개인별 근로가입자의 도달 연령($EA \leq x \leq NRA - 1$)에 대하여, AL과 NC 산정을 위한 매개 변수들을 아래와 같이 순차적으로 수리 모형화 한다. 특히, 경계연령 $x = NRA$에 있어서 정의상의 혼란을 방지하기 위해서 필요시 추가적으로 명확히 정의한다.

첫째, 정상퇴직일시금을 산정하기 위한 기대최종임금의 수리모형은 다음과 같다.

$$EFS(x, t) = S(x, t) \cdot (1 + h)^{NRA-1-x}$$ \hspace{1cm} (III-1)

$$= S(t) \cdot (1 + h)^{NRA-1-x}$$

단, 정상퇴직연령에서는 $EFS(NRA, t) = EFS(NRA-1, t) = S(t)$.

둘째, 가정(A6)의 정상퇴직일시금(즉, 법정최소퇴직금)을 개인별 가입근로자 각각에 대해 산출하는 수리모형은 다음과 같이 정의된다.

$$(NRA - EA) \cdot \frac{EFS(x, t)}{12}$$ \hspace{1cm} (III-2)

셋째, $(x, x+1)$간에 할당되는 단위일시금 적증액을 정의하면 다음과
같다. 즉,

\[
\frac{EFS(x, t)}{12} ~ \quad \text{(III-3)}
\]

위 식은 PUM의 적립특성을 명시적으로 표현하고 있다. 즉, 매 연령 단위기간\((x, x+1)\)마다 NRA 연령에서 발생하는 예측급부 단위일시금 적증액\((\text{projected unit lump-sum credit})\)을 의미한다. 따라서 EA에 가입하여 \(x\)세 도달 시점까지 인식하여야 할 누적 예측급부 단위일시금 적증액은 다음과 같이 정의될 것이다.

\[
(x - EA) \cdot \frac{EFS(x, t)}{12} ~ \quad \text{(III-4)}
\]

단, 정상퇴직연령 \(x = NRA\)에서는 \((NRA - EA) \cdot \frac{S(t)}{12}\).

다음으로, EA에 가입하여 \(x\)세 도달 시점까지 발생한 퇴직일시금 급여채무액\((\text{accrued lump-sum liabilities})\)은 PUM에서 정의되는 AL로서\((\text{기발생표준부채})(\text{accrued past service liabilities})\)의 의미를 갖는다. 즉,

\[
AL(x, t) = (x - EA) \cdot \frac{EFS(x, t)}{12} \cdot v^{NRA - x} ~ \quad \text{(III-5)}
\]

단, 정상퇴직연령에서는 \(AL(NRA, t) = (NRA - EA) \cdot \frac{S(t)}{12}\).

한편, 상기 식\((\text{III-1})\)을 위 식\((\text{III-5})\)에 대입하여 간단히 정리하면

\[
AL(x, t) = (x - EA) \cdot \frac{S(t)}{12} \cdot \left(\frac{1+h}{1+i_v}\right)^{NRA - x} \cdot \frac{1}{1+h}
\]
손익위험 관리 목표값 설정

\[(x - EA) \cdot \frac{S(t)}{12} \cdot \left(\frac{1}{1 + i_v^*} \right)^{NRA-x} \cdot \frac{1}{1 + h} \quad (\text{III-6}) \]

여기에서, “\(i_v^* = i_v - h\)” 를 순이자율가정(net interest assumption)이라 한다. 이는 임금상승률만큼 적용되는 평가이율이 상승하면 향시적으로 일정함을 의미한다. 실무적으로는 각각의 이율을 추정하기 힘든 경우 대안적으로 순이자율 가정을 사용하기도 한다.

한편, 개인별 표준연금채무는 절대금액으로 산출되어 보고됨이 일반적이지만, 내부 관리용으로는 다음과 같이 개인별 임금 대비 일정 %로 보고되기도 한다.

\[AL(x, t) = \frac{AL(x, t)}{S(x, t)} \cdot S(x, t) = a(x) \% \cdot S(x, t) \quad (\text{III-7}) \]

여기에서,

\[a(x) \% = \frac{AL(x, t)}{S(x, t)} \cdot 100 = \frac{x - EA}{12} \cdot \left(\frac{1 + h}{1 + i} \right)^{NRA-x} \cdot \frac{1}{1 + h} \cdot 100 \]

단, \(a(NRA) \% = \frac{AL(NRA, t)}{S(NRA, t)} \cdot 100 = \frac{NRA - EA}{12} \cdot 100 . \)

다음으로, PUM이 가입근로자 개별로 AL을 산정하는 개별적립방식이므로 평가시점(t)현재 근로가입자 모두에 대하여 합산하면 해당 사업장 전체의 총 표준부채는 아래와 같이 산출될 것이다. 즉,

\[\sum_{x=EA}^{NRA} N(x, t) \cdot AL(x, t) = AL(t) \quad (\text{III-8}) \]

단, 식(II-8)에 의해 \(N(x, t) = N(x)\).

12) 재무관리에서 일반적으로 활용되고 있는 피서효과(Fisher effect)를 적용한 결과이다. 이필상(2003), p122 참조.
한편, 기업 재무제표 보고양식에서는 절대금액으로 보고되며 일반적이지만, 상기 식(Ill-7)에서처럼 관리회계적 차원에서 총임금 대비 일정%로 산출하기도 한다.(경계연령 포함) 운용관리 업무를 수행하는 금융기관의 약식보고서에는 주로 아래와 같이 총임금 대비 일정%로 표현됨이 보편적이다.

\[AL(t) = \frac{AL(t)}{TP(t)} \cdot TP(t) = a\% \cdot TP(t) \]

\[a\% = \frac{AL(t)}{TP(t)} = \frac{\sum_{x=EA}^{NRA} N(x) \cdot a(x)\%}{\sum_{x=EA}^{NRA} N(x)} \]

마지막으로 AL 모형 (III-7) 및 (III-9) 각각은 단일 임금상승율 가정(A4) 그리고 항상적 연령분포 가정(A7)의 특성을 반영하고 있다. 따라서 제II장의 총임금 관계식 (II-9) \(TP(t+1) = (1+h) \cdot TP(t) \) 에 의해 AL의 전이특성을 다음으로 표현할 수 있다. 즉,

\[AL(t) = a\% \cdot TP(t), \ AL(t+1) = a\% \cdot TP(t+1), \ldots \]

나. 표준기여액 NC 모형

앞 절에서 표준부채의 산정 모형이 확정되었으므로 표준기여액(NC) 산출메커니즘에 대해 살펴보기로 한다. 이로 모형화 가정 I에서 부연 설명한 바와 같이 사전적립방식을 기본 전제로 설명한다. PUM에서의 근로가입자별 NC의 산정은 상기 식(Ill-3)에서 정의한 연령별 단위기간 \((x, x+1)\)의 단위일시금 적증액을 적립하도록 설계되었다. 따라서 도달연
령 직후에 산출되는 개별 NC는 다음과 같이 정의된다. 즉,

\[
NC(x, t) = \frac{EFS(x, t)}{12} \cdot v^{NRA-x}
\]

(III-11)

단, 경계연령에서는 \(NC(NRA, t) = 0\).

이미 AL 모형화 과정에서 설명한 것처럼, 근로가입자 개인별 현재 임금 대비 일정 %로 표현하면,

\[
NC(x, t) = \frac{NC(x, t)}{S(t)} \cdot S(t) = b(x) \% \cdot S(t)
\]

(III-12)

여기서, \(b(x) \% = \frac{NC(x, t)}{S(t)} = \frac{1}{12} \cdot (1 + h)^{NRA-x} \cdot \frac{1}{1+h}\).

따라서 평가시점 \(t\) 현재 근로가입자별 NC의 합계액 \(NC(t)\) 산출 모형은 아래와 같이 정의된다. 즉,

\[
\sum_{x=EA}^{NRA-1} N(x, t) \cdot NC(x, t) \equiv NC(t)
\]

(III-13)

단, 식(II-8)에 의해 \(N(x, t) = N(x)\).

해당 사업장의 운용관리업무를 수행하는 금융기관은 약식보고서에서 일반적으로 총 임금액 대비 일정 %로 보고함이 보편적이다. 즉, 임의의 \(t\)에 대해

\[
NC(t) = \frac{NC(t)}{TP(t)} \cdot TP(t) = b \% \cdot TP(t)
\]

(III-14)
여기에서, \(b \% = \frac{NC(t)}{TP(t)} = \frac{\sum_{x=EA}^{NRA-1} N(x) \cdot b(x)\%}{\sum_{x=EA}^{NRA-1} N(x)} \).

마지막으로, NC 모형 (III-12) 및 (III-14) 각각은 단일 임금상승률 가정(A4) 그리고 향상적 연령분포 가정(A7)의 특성에 의해 평가시점(t)의 무관한 불변값(b(x)%, b%)을 제공한다. 따라서, 제II장의 공급 계 관계식(II-9) \(TP(t+1) = (1+h) \cdot TP(t) \)을 적용하면 우리는 NC의 전이특성을 쉽게 확인할 수 있다. 즉,

\[NC(t) = b\% \cdot TP(t), \quad NC(t+1) = b\% \cdot TP(t+1), \ldots \] (III-15)

이상의 논의는 모두 적립기간에 적용되는 PUM 적용상의 정태적 연금계리모형들이다. 다음 절에서는 본 연구에서 이들을 활용하여 장기에 측의 기본 모형으로 활용되는 주요 동태적 모형에 대해 간략히 살펴보기로 한다.

다. AL 및 NC 관계 모형

우리는 제V장에서 제용하고 있는 당해 사업장의 총 표준부채와 총 기여액 간의 상호 관련성을 어떻게 수리 모형화 하였는지에 대한 모형론적 근거를 제시하고자 한다\(^{13}\) (마크 V-1 참조).

이미 성주호(2006)에서 모형화 가정 I를 활용하여 다음과 같은 개별 근로자함께 동태적 전이 특성을 증명하였다. 즉, 도달연령 및 평가시 점별 개인 표준부채의 동태적 성장모형은

\(^{13} \) 모형 전이특성에 대한 논의는 PUM으로 충분하므로 기타 적립방식에 대해서는 논의를 생략하도록 한다.
\[\forall x = EA, ..., NRA - 1 \text{ 그리고 } AL(x, 0) \text{에 대하여,} \]
\[AL(x + 1, t + 1) = (1 + i) \cdot [AL(x, t) + NC(x, t)] \]

한편, 위 식(III-16)을 해당사업장 가입근로자 전체에 대하여 확대 적용하면 (EA, EA+1, ... 등으로 순차적으로 적용) 다음과 같은 동태적 모형을 어렵지 않게 유도할 수 있다. 즉,

\[
\sum_{x = EA}^{NRA - 1} N(x + 1) \cdot AL(x + 1, t + 1) = (1 + i) \cdot \left(\sum_{x = EA}^{NRA - 1} N(x) \cdot [AL(x, t) + NC(x, t)] \right)
\]

결론적으로 운용관리 업무를 담당할 해당 금융기관은 '근로가입자들에 한정하여' 적립기간에 적용되는 사업장의 표준부채 전이특성은 초기에 산출된 \(AL(0) \)에 대하여,

\[AL(t + 1) = (1 + i) \cdot [AL(t) + NC(t)] \] (III-17)

그러나 평가시점(t)에서 정년퇴직근로자에 대한 퇴직급여금급여가 지급되어야 하므로 상기 모형(III-17)은 전체 표준부채의 전이특성을 표현하지 못하는 한계점이 있다. 이에 대한 구체적 설명은 제V장에서 다룬다(식(V-2) 참조).

마지막으로 우리가 지금까지 유도한 모형들을 활용하여 근로가입자 개별 \(AL \) 및 \(NC \) 전이특성을 정리하면 다음과 같은 그림으로 정리된다.
3. ENT 적립방식

ENT 방식은 PUM 방식과는 달리 지급능력 확보(fund solvency)보다는 기여액의 안정성(contribution stability)에 적립 목적의 우선순위를 두고 개발된 가장 오래된 적립방식이다. 즉, 퇴직연금제도의 연속성(going-on basis)을 전제로 신규 가입근로자가 정상퇴직연령(NRA)까지 근속함을 가정하여 전 연령기간에 적용될 평준기여율(level contribution rate)을 먼저 산정한다. 즉, PUM의 NC가 자연보험료(natural premium) 개념이라면 ENT의 NC는 평준순보험료(level net premium) 개념에 해당한다고 설명할 수 있다. 따라서 NC 산정의 기준연령은 신규가입연령EA로 설정한다. 다음으로, 이에 상응하는 AL은 미래법 책임준비금 산정 방식으로 산출한다. NC 산정 후 AL 산정하는 절차를 따름을 의미한다.

실제로 ENT 적립방식은 퇴직보험의 적립방식으로 이미 사용되고 있는 방식이므로, 이는 전통적 보험상품의 요율 산정원칙인 수지상등의

손익위험 관리 목표값 설정

원칙에 근거한다.

ENT 재정방식의 기본원리에 따라, 순차적으로 살펴보기로 한다. 이를 통하여 PUM 방식의 기본 개념과의 차별성을 쉽게 확인할 수 있을 것이다. PUM에서와 같은 취지에서, ENT 모형화 과정에서 필요시 경계 연령\((x = EA, NRA)\)에서의 경계값을 명확히 정의할 것이다.

가. 표준기여액 NC 모형

평가시점\((t)\), 신규 근로가입자 연령\((EA)\)을 기준연령을 설정하고 기대 최종임금을 먼저 산정하면,

\[
EFS(EA, t) = S(EA, t) \cdot (1 + h)^{NRA - EA} \quad (III-18)
\]

\[
= S(t) \cdot (1 + h)^{NRA - EA}
\]

다음으로, 신규 근로가입자의 정상퇴직일시금을 산정하는 모형은 아래와 같이 정의됨을 알 수 있다. 즉,

\[
(NRA - EA) \cdot \frac{EFS(EA, t)}{12} \quad (III-19)
\]

따라서 신규 근로가입자에게 할당된 정상퇴직일시금의 (계리적) 현가 \((APV)\)를 간략히 \(APVB(EA, t)\)라고 표현하면,

\[
APVB(EA, t) = (NRA - EA) \cdot \frac{EFS(EA, t)}{12} \cdot v^{NRA - EA}
\]

\[
= (NRA - EA) \cdot \frac{S(t)}{12} \cdot \left(\frac{1 + h}{1 + i_e}\right)^{NRA - EA} \cdot \frac{1}{1 + h} \quad (III-20)
\]
이미 언급한 바와 같이, \(i_e - h\) 는 순이자율 가정이다.

다음으로, 신규 근로가입자에게 향후 부여될 임금 흐름의 계리적 현가(APV)를 \(APVS(EA, t)\)라고 표현하면 모형은 아래와 같다. 즉,

\[
APVS(EA, t)
= S(EA, t) + \frac{S(EA + 1, t + 1)}{(1 + i)} + \cdots + \frac{S(NRA - 1, t + NRA - 1 - EA)}{(1 + i)^{NRA - 1 - EA}}
= S(t) \cdot \left[1 + \frac{1 + h}{1 + i} + \left(\frac{1 + h}{1 + i} \right)^2 + \cdots + \left(\frac{1 + h}{1 + i} \right)^{NRA - 1 - EA} \right]
= S(t) \cdot \ddot{a}_{NRA-EA}, \quad j = \frac{i - h}{1 + h} \approx i - h \quad (\text{III-21})
\]

결론적으로, 가상가입연령(notional entry age)은 가정 (A1)에 의해 \(EA\) 이므로, 전 근로기간(즉, \(NRA - EA\))에 걸쳐, 수지상등의 원칙 (actuarial equivalence principle)을 적용한다. 즉, 연령별 임금 대비 일정률(즉, \(K\)라고 하자)을 납입하는 평준표준기여율(level standard contribution rate)은 다음과 같은 것을 알 수 있다.

\[
APVB(EA, t) = K \cdot APVS(EA, t) \quad (\text{III-22})
\]

따라서 위 식을 정리하면 최종적으로 우리가 도출하고자 하는 표준기여액 산정 모형은 아래와 같이 정의된다. 즉, \(\forall x = EA, \ldots, NRA - 1,\)

\[
NC(x, t) = K \cdot S(t)
\]
손익위험 관리 목표값 설정

\[
NC(t) = \sum_{x = EA}^{NRA-1} N(x) \cdot NC(x, t)
\]

\[
NC(x, t+1) = K \cdot S(t+1) = NC(x, t) \cdot (1+h)
\]

여기에서, \(K = \frac{APVB(EA, t)}{APVS(EA, t)} \)

\[
= \frac{(NRA - EA)}{12} \cdot \left(\frac{1+h}{1+i_v} \right)^{NRA-EA} \cdot \frac{1}{1+h}
\]

위의 \(K \) 는 임의의 연령 \((x)\) 및 임의의 시점\((t)\)와 무관하게 정의되는 상수이다. 단지 가상근로기간\(\text{(notional in-service period)}\) \(NRA - EA\)에 의해 영향을 받음을 알 수 있다.

이미 PUM에서 설명한 것처럼, 사용자를 위한 약식 보고서는 상기와 같이 절대금액으로 제시하기 보다는 아래와 같이 임금대비 일정\%로 제시됨이 보편적이다. \(\forall t = 0, 1, 2, \ldots \) 그리고 \(\forall x = EA, \ldots NRA - 1, \)

\[
NC(x, t) = \frac{NC(x, t)}{S(t)} \cdot S(t) = c(x) \% \cdot S(t)
\]

\[
NC(t) = \frac{NC(t)}{TP(t)} \cdot TP(t) = c \% \cdot TP(t)
\]

여기에서, \(c(x) \% = \frac{NC(x, t)}{S(t)} = K \) 그리고
종합적으로 살펴보면, 항상적 인구구조 가정(A7)과 단일 임금상승률 가정 (A4)의 특성은 시간 t와 무관한 불변값(\(c\%\), 즉 \(K\))을 제공한다. 따라서 시간 t에 대한 NC의 전이특성은 다음과 같다. 즉,

\[
c\% = \frac{NC(t)}{TP(t)} = \frac{\sum_{x=E}^{NRA-1} N(x) \cdot c(x)\%}{\sum_{x=E}^{NRA-1} N(x)} = K.
\]

\[
NC(t) = c\% \cdot TP(t), \quad \text{(III-25)}
\]

\[
NC(t+1) = c\% \cdot TP(t+1) = NC(t) \cdot (1+h), \ldots
\]

나. 표준부채 AL 모형

다음으로 AL의 산정 절차에 대해 살펴보기로 한다. 이미 설명한 바와 같이 AL은 미래법 책임준비금 산정 원칙을 따르고 있다.

먼저, 평가시점(t)에 x세에 도달 가입근로자에 대해서 인식하여야 할 총 퇴직일시금 금여채무의 (계리적) 현가(\(APV\) of total (past and future) lump-sum capital)를 \(TSL(x, t)\)라고 표현하면, 과거발생채무와 미래발생채무로 양분될 수 있다. 즉,

\[
TSL(x, t) = (NRA - EA) \cdot \frac{EFS(x, t)}{12} \cdot \left(\frac{1}{1+i_v}\right)^{NRA-x}
\]

\[
= PSL(x, t) + FSL(x, t) \quad \text{(III-26)}
\]

단, \(TSL(EA, t) = APVB(EA, t), TSL(NRA, t) = (NRA - EA) \cdot \frac{S(t)}{12}\)
여기에서,

\[EFS(x, t) = S(x) \cdot (1 + h)^{NRA-x} \]

\[PSL(x, t) = (x - EA) \cdot S(t) \cdot \frac{(1+h)}{1+i}^{NRA-x} \cdot \frac{1}{1+h} \]

\[FSL(x, t) = (NRA-x) \cdot \frac{S(t)}{12} \cdot \frac{(1+h)}{1+i}^{NRA-x} \cdot \frac{1}{1+h} \]

위 식의 \(PSL(x, t) \)은 PUM 적립방식의 \(AL(x, t) \)와 일치하는 과거발생채무(past service liabilities)에 해당한다. 그리고 \(FSL(x, t) \)은 잔여 근로기간(\(NRA-x \))에 대해 향후 발생할 퇴직급여의 (계리적) 현가인 미래발생채무(future service liabilities)를 의미한다.

한편, \(AL \)은 미래법 책임준비금산정원칙을 따르고 있으므로 \(AL \)산정모형을 정의하기 위해서는 추가적으로 다음의 절차가 필요함을 알 수 있다.

우선, 평가시점(\(t \)) 현재 \(x \)세에 도달한 근로가입자의 잔여 적립기간(\(NRA-x \)) 동안 유입될 표준기여액의(계리적) 현가(APV of future standard contributions)를 \(TFC(x, t) \)라고 정의하면,

\[TFC(x, t) \]

\[= K \cdot [S(x, t)] + S(x+1, t+1) \cdot \frac{1}{1+i} + \cdots + S(NRA-1, t+NRA-x-1) \cdot \frac{1}{1+i}^{NRA-x-1} \]

\[= K \cdot S(t) \cdot [1 + \frac{1+h}{1+i} + \left(\frac{1+h}{1+i}\right)^2 + \cdots + \left(\frac{1+h}{1+i}\right)^{NRA-x-1}] \]

\[= K \cdot APVS(x, t) \]

\[= K \cdot S(t) \cdot \ddot{a}_{NRA-x}^{\cdot j} \] (III-27)

따라서 상기 식(III-26)과 (III-27)에 의해 \(AL \)은 다음과 같이 정의된다.
즉, 예측급여평가방식에 해당하는 ENT 적립방식에서 인식하는 순채무 (net liabilities) AL임을 의미한다.

참고적으로, 가입연령 \(x = EA \)에서 \(AL(EA, t) = 0 \)는 당연한 결과이지만, 이를 검증하여 보면

\[
\begin{align*}
APVNC(EA, t) &= K \cdot APVS(EA, t) \\
&= \frac{APVB(EA, t)}{APVS(EA, t)} \cdot APVS(EA, t) \\
&= APVB(EA, t) = APVTB(EA, t).
\end{align*}
\]

따라서 \(TSL(EA, t) - TNC(EA, t) = AL(EA, t) = 0 \).

한편, 정상퇴직연령 \(x = NRA \)에서 \(AL(NRA, t) = TSL(NRA, t) \)이다.

이상의 논의 과정에서 언급한 바와 같이, 약식보고용으로 퇴직연금 운용관리 금융기관은 다음과 같이 입금대비 일정% 지표를 보편적으로 활용한다.

\[
\begin{align*}
AL(x, t) &= \frac{AL(x, t)}{S(t)} \cdot S(t) = d(x) \% \cdot S(t), \\
AL(t) &= \frac{AL(t)}{TP(t)} \cdot TP(t) = d \% \cdot TP(t).
\end{align*}
\] (III-29)
여기에서,
\[d(x)\% = \frac{AL(x, t)}{S(t)} = \frac{NRA - EA}{12} \cdot (\frac{1+h}{1+i})^{NRA-x} \cdot \frac{1}{1+h} - K \cdot \ddot{a}_{NRA-x},j \]

\[d\% = \frac{AL(t)}{TP(t)} = \frac{\sum_{x=EA}^{NRA} N(x) \cdot d%(x)}{\sum_{x=EA}^{NRA} N(x)} \]

\[d(NRA)\% = \frac{AL(NRA, t)}{S(t)} = \frac{NRA - EA}{12} \]

마지막으로 위 식(III-29)는 향상적 인구구조 가정(A7) 그리고 단일 임금상승율 가정(A4)에 의해 시간 \(t \)에 불변인 상수값 \(d(x)\%, d\% \)로 표현되고 있다. 따라서 시간 \(t \)에 대한 \(AL \)의 전이특성은 다음 관계식에 의해 특징지어진다.

\[AL(t) = d\% \cdot TP(t), \quad AL(t+1) = d\% \cdot TP(t+1), \quad \ldots \quad \text{(III-30)} \]

4. ATM 적립방식

가. ATM이란?

실무에서 일반적으로 언급되고 있는 퇴직급여추계액 방식이란 근의법 제12조 제5호 나목에서 규정된 적립방식을 의미한다. 이는 한국형 퇴직연금이 폐직결여금에 근거하여 급여설계가 이루어지는 법정 급여설계 (mandatory benefit design)에 근거한 한국형 적립방식으로 이해할 수 있다. 즉, “나”를 옵저보면 “가입자 및 가입자이었던 자의 당해 사업 연도 말일까지의 가입기간에 대한 급여에 소요되는 비용예상액을 노동
부 장관이 정하는 방식15에 의해 산정된 금액 …”이다.

여기에서, 비용예상액이라 함은 노사가 합의한 “확정급여형 퇴직연금 규약”상의 급여공식에 의해 산정되는 연급채무로서, 근로법 제12조제4호에 규정된 최소퇴직일시금 수준 이상을 의미한다〈그림 I-3> 참고).

다음으로, 산정시점 “당해 사업연도 말일까지” 그리고 “근로법 제12조 제4호상의 법정최소퇴직일시금 산정 규정” 등을 종합하여 판단하면, 기 발생 확정채무(vested benefit obligation)를 산정하여야 함을 알 수 있다. 부언하면, 연급채무산정방식이 발생급여평가방식(accrued benefit valuation methods)으로 분류할 수 있음을 시사한다. 따라서 PUM처럼 AL을 산정한 후, NC를 산정하는 절차를 규정한 것으로 해석된다.

또한 아래의 각주를 참조하면, 가입자별로 개별 산정한 후, 이를 가입자별로 총합하는 원칙을 제시하고 있다. 즉, 개별적립방식(individual funding methods)의 범주에 속하는 것으로 유추할 수 있다.

이상의 논의를 토대로 판단하면, 퇴직급여추계액 방식은 연도말 적립방식(annual terminal funding method: 이하 ATM이라 함)으로 규정할 수 있다. 물론 이는 사전적으로 재정의 안정성을 도모하는 적립의 기본원칙과 상당부분 파리가 있는 사후적립방식이다. 그러나 기존의 적립방식에 비해 상대적으로 다루기에 편리한 측면과 더불어 회계 처리 또한 단순하며 사업장별 차별성이 없이 횡단적으로 처리할 수 있다는 장점이 있다. 부언하면, 위험률에 대한 가정이 불필요하다는 점을 장점 아닌 단점으로 언급할 수 있다.

나. AL 및 NC 모형

PUM, ENT와 동일한 가정을 사용하여 수리적으로 고찰하면 다음과 같다. 여기에서 유의하여야 할 점은 지금까지 사전 적립방식(pre-funding
손익위험 관리 목표값 설정

methods)을 다루어온 것과는 반대로 ATM은 사후 적립방식(post-funding methods)이라는 점이다. 그리고 적용상의 간편성이 장점 아닌 단점으로 언급할 수 있다.

현재 시점(t)에서 개별 근로자들의 도달 연령(EA ≤ x ≤ NRA - 1)에 대하여 다음과 같은 간단한 재귀식(recursive equation) (III-31) 그리고 (III-32)에 의해 AM 및 NC 모형의 특성이 규명됨을 확인할 수 있다. 즉,

\[\begin{align*}
AL(x + 1, t + 1) &= (x + 1 - EA) \cdot S(x, t + 1) \cdot \frac{1}{12} \\
&= (x + 1 - EA) \cdot S(x - 1, t) \cdot (1 + h) \cdot \frac{1}{12} \\
&= AL(x, t) \cdot (1 + h) + NC(x, t) \cdot (1 + h) \\
&= (1 + h) \cdot [AL(x, t) + NC(x, t)] \\
&= AL(EA, \cdot) = 0 \quad \& \quad NC(EA, \cdot) = 0, \quad \forall t
\end{align*} \]

또한 사후적립의 특성에 의해,

\[\begin{align*}
NC(x + 1, t + 1) &= S(x, t + 1) \cdot \frac{1}{12} \\
&= S(x - 1, t) \cdot \frac{1}{12} \cdot (1 + h) \\
&= (1 + h) \cdot [NC(x, t) + AL(x, t)] \\
&= NC(EA, \cdot) = 0, \quad \forall t
\end{align*} \]

마지막으로, 전체 가입근로자에 대하여 흡합하는 과정 그리고 약식보고서용으로 활용되는 임금대비 일정%로 모형화하는 과정 등은 모두 PUM 및 ENT에서의 접근과 동일한 논리구조를 갖는다. 여기서는
논의의 반복을 피하기 위해 생략한다.
다음 절에서는 지금까지 도출된 적립방식별 AL 그리고 NC 모형의 수치 예시를 통하여 그 특징적 차별성을 검증하고자 한다.

5. 수치 예시

PUM, ENT 및 ATM의 수치 예시를 위한 각 변수들의 가정은 아래와 같다. 특히 재무적 가정은 최근 노동부에서 발표한 최근노동경제동향의 주요경제지표를 참조하여 재무적 가정을 설정하였다(아래의 <표 III-1> 및 <표 III-2> 참조).

- 인구 통계적 가정
 : \(EA = 40 \text{세}, \ NRA = 55 \text{세} \).
 : \(N(x, t) = N(x), \forall x = EA, EA + 1, \ldots, NRA \)
 (즉, 항상적 연령별 인구구조를 가정하고 있음)

- 재무적 가정
 : 평가시점 = \(t \)년도 말
 : 단일 평가이율은 지표급리의 하나인 3년만기 AA- (무보증) 회사채수익률을 사용함(아래의 <표 III-1> 참조).
 : 임금상승률은 명목임금상승률을 사용함(아래의 <표 III-2> 참조).

- 재무 예시 시나리오
 : 다음과 같이 중도적 관점(most likely), 낙관적 관점(optimistic), 비관적 관점(pessimistic)등 3-관점의 재무적 가정을 예시하다.

 ○ 중도적 관점은 회사채수익률의 평균 및 명목임금상승률 평균 사용함.
손익위험 관리 목표값 설정

◦ 낙관적 관점은 회사채수익률의 상한 및 명목임금상승률 하한 사용함
◦ 비관적 관점은 회사채수익률의 하한 및 명목임금상승률 상한 사용함

즉,

<table>
<thead>
<tr>
<th>예시 I</th>
<th>(S(t) = 3,000 \text{ 만원 (명목임금)}, ; s_x = 1.0, ; \forall x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i = 5.8% \text{ (명목평가이율)}, ; h = 7.4% \text{ (명목임금상승률)})</td>
</tr>
<tr>
<td></td>
<td>(\therefore \text{ 명목순이자율} ; i^* = i - h = -1.6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>예시 II</th>
<th>(S(t) = 3,000 \text{ 만원 (명목임금)}, ; s_x = 1.0, ; \forall x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i = 8.1% \text{ (명목평가이율)}, ; h = 5.1% \text{ (명목임금상승률)})</td>
</tr>
<tr>
<td></td>
<td>(\therefore \text{ 명목순이자율} ; i^* = i - h = 3.0%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>예시 III</th>
<th>(S(t) = 3,000 \text{ 만원 (명목임금)}, ; s_x = 1.0, ; \forall x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i = 3.7% \text{ (명목평가이율)}, ; h = 11.2% \text{ (명목임금상승률)})</td>
</tr>
<tr>
<td></td>
<td>(\therefore \text{ 명목순이자율} ; i^* = i - h = -7.5%)</td>
</tr>
</tbody>
</table>

<표 III-1> 최근 7년 회사채수익률

<table>
<thead>
<tr>
<th>구분</th>
<th>‘06</th>
<th>‘05</th>
<th>‘04</th>
<th>‘03</th>
<th>‘02</th>
<th>‘01</th>
<th>‘00</th>
</tr>
</thead>
<tbody>
<tr>
<td>회사채수익률 (3년만기, AA-)</td>
<td>5.3%</td>
<td>5.5%</td>
<td>3.7%</td>
<td>5.6%</td>
<td>5.7%</td>
<td>7.0%</td>
<td>8.1%</td>
</tr>
<tr>
<td></td>
<td>3.7%, 8.1%</td>
<td>5.8%, (1.4%)²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

자료: 노동부 최신노동경제동향(07.01.15) 재구성
<표 III-2> 최근 7년 임금상승률

(전년 10월 대비)

<table>
<thead>
<tr>
<th>구분</th>
<th>'06</th>
<th>'05</th>
<th>'04</th>
<th>'03</th>
<th>'02</th>
<th>'01</th>
<th>'00</th>
</tr>
</thead>
<tbody>
<tr>
<td>명목임금</td>
<td>5.8</td>
<td>6.8</td>
<td>6.0</td>
<td>9.2</td>
<td>11.2</td>
<td>5.1</td>
<td>8.0</td>
</tr>
<tr>
<td>상승률</td>
<td>7.4</td>
<td>(2.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>5.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>분산</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실질임금</td>
<td>3.4</td>
<td>3.9</td>
<td>2.3</td>
<td>5.5</td>
<td>8.2</td>
<td>1.0</td>
<td>5.6</td>
</tr>
<tr>
<td>상승률</td>
<td>4.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>자료</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: 상용근로자 5인 이상 사업체 대상
자료: 노동부 최신노동경제동향(07.01.15) 재구성

아래에 주어진 산출 예시<표 III-3>~<표 III-9>의 주요 시사점으로 다음을 언급할 수 있을 것이다.

첫째, PUM, ENT 등 사전적립방식은 순이자율 가정 \((i^*_v = i_v - h)\)에 민감하게 반응함을 알 수 있다. 구체적으로 살펴보면, 공통적으로 순이자율이 높게 설정될수록 NC 및 AL 값은 상대적으로 낮게 나타난다. 이는 순이자율에 대하여 NC 및 AL이 반비례함을 의미한다.

둘째, ATM의 경우는 사후적립방식의 특징으로 상기 첫 번째 시사점과는 차별적으로 나타난다. 즉, 상기 식(III-31) 및 (III-32)에서 확인할 수 있듯이 순이자율과는 무관하게 일정한 산출 예를 제시하고 있다. 특히, 현행 근퇴법상 확정기여형(DC)에서 요구하고 있는

\[
NC(x, t : DC) = \frac{1}{12} \cdot S(x, t) \equiv 8.33\% \cdot S(x, t), \ \forall x, t \quad \text{일치하는 결과를 보여주고 있음에 주목하여야 한다. 따라서 일부 학자들 사이에서 현행 근퇴법상의 최소퇴직일시금을 적립하는 적립방식의 불필요성을 제기하는 관점은 바로 이러한 사후적립메커니즘이 확정기여형 운용관리와 별다른 차별이 없음을 강조한 측면이라고 사료된다. 그러나 ATM은 명확히 사후 정산하는 방식이므로, 엄밀한 의미에서는 적립방식의 범주에 들 수 없는 간편식 정도로 이해할 수 있을 것이다. 왜냐하면 단위평가}{

\[
\int_0^\infty e^{-t} \cdot f(t) \, dt = \text{전년 10월 대비)
\]

\[
\text{표 III-2> 최근 7년 임금상승률}
\]

<table>
<thead>
<tr>
<th>구분</th>
<th>'06</th>
<th>'05</th>
<th>'04</th>
<th>'03</th>
<th>'02</th>
<th>'01</th>
<th>'00</th>
</tr>
</thead>
<tbody>
<tr>
<td>명목임금</td>
<td>5.8</td>
<td>6.8</td>
<td>6.0</td>
<td>9.2</td>
<td>11.2</td>
<td>5.1</td>
<td>8.0</td>
</tr>
<tr>
<td>상승률</td>
<td>7.4</td>
<td>(2.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>5.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>분산</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>실질임금</td>
<td>3.4</td>
<td>3.9</td>
<td>2.3</td>
<td>5.5</td>
<td>8.2</td>
<td>1.0</td>
<td>5.6</td>
</tr>
<tr>
<td>상승률</td>
<td>4.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>자료</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: 상용근로자 5인 이상 사업체 대상
자료: 노동부 최신노동경제동향(07.01.15) 재구성

아래에 주어진 산출 예시<표 III-3>~<표 III-9>의 주요 시사점으로 다음을 언급할 수 있을 것이다.

첫째, PUM, ENT 등 사전적립방식은 순이자율 가정 \((i^*_v = i_v - h)\)에 민감하게 반응함을 알 수 있다. 구체적으로 살펴보면, 공통적으로 순이자율이 높게 설정될수록 NC 및 AL 값은 상대적으로 낮게 나타난다. 이는 순이자율에 대하여 NC 및 AL이 반비례함을 의미한다.

둘째, ATM의 경우는 사후적립방식의 특징으로 상기 첫 번째 시사점과는 차별적으로 나타난다. 즉, 상기 식(III-31) 및 (III-32)에서 확인할 수 있듯이 순이자율과는 무관하게 일정한 산출 예를 제시하고 있다. 특히, 현행 근퇴법상 확정기여형(DC)에서 요구하고 있는

\[
NC(x, t : DC) = \frac{1}{12} \cdot S(x, t) \equiv 8.33\% \cdot S(x, t), \ \forall x, t \quad \text{일치하는 결과를 보여주고 있음에 주목하여야 한다. 따라서 일부 학자들 사이에서 현행 근퇴법상의 최소퇴직일시금을 적립하는 적립방식의 불필요성을 제기하는 관점은 바로 이러한 사후적립메커니즘이 확정기여형 운용관리와 별다른 차별이 없음을 강조한 측면이라고 사료된다. 그러나 ATM은 명확히 사후 정산하는 방식이므로, 엄밀한 의미에서는 적립방식의 범주에 들 수 없는 간편식 정도로 이해할 수 있을 것이다. 왜냐하면 단위평가
기간\((x, x+1)\) 기간에 연금재정이 불안정한 가운데 사용주가 파산에 직면한다면, 사전적립방식에 비해 지급능력위험 뿐만 아니라 기여위험이 상당히 증가하는 최악의 시나리오가 실현될 가능성이 높기 때문이 다.

셋째, PUM 방식과 ENT 방식의 특징적 차별성은 <그림 III-2> vs. <그림 III-3> 그리고 <그림 III-4> vs. <그림 III-5>을 비교하면 잘 알 수 있다. 즉, PUM 방식이 자연보험료 개념인 반면 ENT 방식이 평준순보험료 방식임을 쉽게 확인할 수 있다. 또한 이러한 특성으로 인하여 순이자율 가정에 대하여 NC 및 AL값 각각은 PUM이 상대적으로 ENT에 비해 민감하게 대응하고 있음을 알 수 있다.

마지막으로, 우리가 제시한 3가지 시나리오(예시 I, II, III)에 대하여 다음과 같은 결론을 내릴 수 있다(물론 논의에서 ATM은 예외적으로 취급되어야 함). 즉, 중도적 관점, 낙관적 관점 그리고 비관적 관점 각각은 순이자율의 상대적 값의 차이에 의해 특정 지위점을 알 수 있다. 무언 설명하면, 비관적 관점(즉, \(i^*_n \downarrow -\infty\))은 연금 재정의 안전성을 확보하기 위해 NC 및 AL 등 손익 위험 관리 목표값을 높게 설정하는 보수적 입장을 견지한다. 반대로 낙관적 관점(즉, \(i^*_n \uparrow +\infty\))은 연금 재정의 안전성 보다는 사용자의 재정적 부담을 경감하기 위하여 NC 및 AL 등 손익위험 관리 목표값을 낮게 설정하는 입장을 취한다.

결론적으로, 순이자율 가정의 적절성 여부가 노사간의 이해관계를 조율할 수 있는 운용관리 컨설팅 업무의 출발점을 깊이 인식할 필요성이 있다.
<표 III-3> PUM 산정예시 [16]

<table>
<thead>
<tr>
<th>도달연령 ((x))</th>
<th>(EFS(x, t))</th>
<th>(NC(x, t))</th>
<th>(\frac{NC(x, t)}{S(x, t)})</th>
<th>(AL(x, t))</th>
<th>(\frac{AL(x, t)}{S(x-1, t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>8,150</td>
<td>292</td>
<td>9.72%</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>41</td>
<td>7,589</td>
<td>287</td>
<td>9.57%</td>
<td>287</td>
<td>9.57%</td>
</tr>
<tr>
<td>42</td>
<td>7,066</td>
<td>283</td>
<td>9.43%</td>
<td>566</td>
<td>18.86%</td>
</tr>
<tr>
<td>43</td>
<td>6,579</td>
<td>279</td>
<td>9.29%</td>
<td>836</td>
<td>27.87%</td>
</tr>
<tr>
<td>44</td>
<td>6,126</td>
<td>275</td>
<td>9.15%</td>
<td>1,098</td>
<td>36.61%</td>
</tr>
<tr>
<td>45</td>
<td>5,704</td>
<td>270</td>
<td>9.02%</td>
<td>1,352</td>
<td>45.08%</td>
</tr>
<tr>
<td>46</td>
<td>5,311</td>
<td>266</td>
<td>8.88%</td>
<td>1,599</td>
<td>53.29%</td>
</tr>
<tr>
<td>47</td>
<td>4,945</td>
<td>262</td>
<td>8.75%</td>
<td>1,837</td>
<td>61.24%</td>
</tr>
<tr>
<td>48</td>
<td>4,604</td>
<td>259</td>
<td>8.62%</td>
<td>2,069</td>
<td>68.95%</td>
</tr>
<tr>
<td>49</td>
<td>4,287</td>
<td>255</td>
<td>8.49%</td>
<td>2,292</td>
<td>76.41%</td>
</tr>
<tr>
<td>50</td>
<td>3,992</td>
<td>251</td>
<td>8.36%</td>
<td>2,509</td>
<td>83.64%</td>
</tr>
<tr>
<td>51</td>
<td>3,716</td>
<td>247</td>
<td>8.24%</td>
<td>2,719</td>
<td>90.63%</td>
</tr>
<tr>
<td>52</td>
<td>3,460</td>
<td>243</td>
<td>8.12%</td>
<td>2,922</td>
<td>97.40%</td>
</tr>
<tr>
<td>53</td>
<td>3,222</td>
<td>240</td>
<td>8.00%</td>
<td>3,118</td>
<td>103.94%</td>
</tr>
<tr>
<td>54</td>
<td>3,000</td>
<td>236</td>
<td>7.88%</td>
<td>3,308</td>
<td>110.27%</td>
</tr>
<tr>
<td>55</td>
<td>3,000</td>
<td>0</td>
<td>0.00%</td>
<td>3,750</td>
<td>125.00%</td>
</tr>
</tbody>
</table>

주: \(NC(t) = 8.77\% \cdot TP(t)\) 그리고 \(AL(t) = 67.25\% \cdot TP(t)\).

[16] 산정 예시에서 사용된 % 단위는 소수점 이하 5째 자리에서 반올림한 것이며, 금액은 단위 금액을 기준으로 소수점이하 첫째자리에서 반올림한 수치이다.
<표 III-4> PUM 산정예시 II 17)

<table>
<thead>
<tr>
<th>도달연령</th>
<th>$EFS(x, t)$</th>
<th>$NC(x, t)$</th>
<th>$\frac{NC(x, t)}{S(x, t)}$</th>
<th>$AL(x, t)$</th>
<th>$\frac{AL(x, t)}{S(x - 1, t)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6,019</td>
<td>156</td>
<td>5.20%</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>41</td>
<td>5,727</td>
<td>160</td>
<td>5.35%</td>
<td>160</td>
<td>5.35%</td>
</tr>
<tr>
<td>42</td>
<td>5,449</td>
<td>165</td>
<td>5.50%</td>
<td>330</td>
<td>11.00%</td>
</tr>
<tr>
<td>43</td>
<td>5,185</td>
<td>170</td>
<td>5.66%</td>
<td>509</td>
<td>16.97%</td>
</tr>
<tr>
<td>44</td>
<td>4,933</td>
<td>175</td>
<td>5.82%</td>
<td>698</td>
<td>23.27%</td>
</tr>
<tr>
<td>45</td>
<td>4,694</td>
<td>180</td>
<td>5.98%</td>
<td>898</td>
<td>29.92%</td>
</tr>
<tr>
<td>46</td>
<td>4,466</td>
<td>185</td>
<td>6.15%</td>
<td>1,108</td>
<td>36.93%</td>
</tr>
<tr>
<td>47</td>
<td>4,250</td>
<td>190</td>
<td>6.33%</td>
<td>1,329</td>
<td>44.31%</td>
</tr>
<tr>
<td>48</td>
<td>4,043</td>
<td>195</td>
<td>6.51%</td>
<td>1,563</td>
<td>52.09%</td>
</tr>
<tr>
<td>49</td>
<td>3,847</td>
<td>201</td>
<td>6.70%</td>
<td>1,808</td>
<td>60.27%</td>
</tr>
<tr>
<td>50</td>
<td>3,660</td>
<td>207</td>
<td>6.89%</td>
<td>2,066</td>
<td>68.88%</td>
</tr>
<tr>
<td>51</td>
<td>3,483</td>
<td>213</td>
<td>7.08%</td>
<td>2,338</td>
<td>77.93%</td>
</tr>
<tr>
<td>52</td>
<td>3,314</td>
<td>219</td>
<td>7.29%</td>
<td>2,623</td>
<td>87.44%</td>
</tr>
<tr>
<td>53</td>
<td>3,153</td>
<td>225</td>
<td>7.49%</td>
<td>2,923</td>
<td>97.43%</td>
</tr>
<tr>
<td>54</td>
<td>3,000</td>
<td>231</td>
<td>7.71%</td>
<td>3,238</td>
<td>107.92%</td>
</tr>
<tr>
<td>55</td>
<td>3,000</td>
<td>0</td>
<td>0.00%</td>
<td>3,750</td>
<td>125.00%</td>
</tr>
</tbody>
</table>

주: $NC(t) = 6.38\% \cdot TP(t)$ 그리고 $AL(t) = 56.32\% \cdot TP(t)$.

17) 산정 예시에서 사용된 % 단위는 소수점 이하 5째 자리에서 반올림한 것이며, 금액은 단위 금액을 기준으로 소수점 이하 첫째 자리에서 반올림한 수치이다.
<표 III-5> PUM 산정예시 18).

<table>
<thead>
<tr>
<th>도달연령 ((x))</th>
<th>(EFS(x, t))</th>
<th>(NC(x, t))</th>
<th>(\frac{NC(x, t)}{S(x, t)})</th>
<th>(AL(x, t))</th>
<th>(\frac{AL(x, t)}{S(x - 1, t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>13,261</td>
<td>641</td>
<td>21.36%</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>41</td>
<td>11,926</td>
<td>598</td>
<td>19.92%</td>
<td>598</td>
<td>19.92%</td>
</tr>
<tr>
<td>42</td>
<td>10,725</td>
<td>557</td>
<td>18.58%</td>
<td>1,115</td>
<td>37.15%</td>
</tr>
<tr>
<td>43</td>
<td>9,644</td>
<td>520</td>
<td>17.32%</td>
<td>1,559</td>
<td>51.97%</td>
</tr>
<tr>
<td>44</td>
<td>8,673</td>
<td>485</td>
<td>16.15%</td>
<td>1,939</td>
<td>64.62%</td>
</tr>
<tr>
<td>45</td>
<td>7,799</td>
<td>452</td>
<td>15.07%</td>
<td>2,260</td>
<td>75.33%</td>
</tr>
<tr>
<td>46</td>
<td>7,014</td>
<td>421</td>
<td>14.05%</td>
<td>2,529</td>
<td>84.29%</td>
</tr>
<tr>
<td>47</td>
<td>6,307</td>
<td>393</td>
<td>13.10%</td>
<td>2,751</td>
<td>91.71%</td>
</tr>
<tr>
<td>48</td>
<td>5,672</td>
<td>367</td>
<td>12.22%</td>
<td>2,932</td>
<td>97.74%</td>
</tr>
<tr>
<td>49</td>
<td>5,101</td>
<td>342</td>
<td>11.39%</td>
<td>3,076</td>
<td>102.54%</td>
</tr>
<tr>
<td>50</td>
<td>4,587</td>
<td>319</td>
<td>10.63%</td>
<td>3,188</td>
<td>106.25%</td>
</tr>
<tr>
<td>51</td>
<td>4,125</td>
<td>297</td>
<td>9.91%</td>
<td>3,270</td>
<td>109.00%</td>
</tr>
<tr>
<td>52</td>
<td>3,710</td>
<td>277</td>
<td>9.24%</td>
<td>3,327</td>
<td>110.89%</td>
</tr>
<tr>
<td>53</td>
<td>3,336</td>
<td>259</td>
<td>8.62%</td>
<td>3,361</td>
<td>112.02%</td>
</tr>
<tr>
<td>54</td>
<td>3,000</td>
<td>241</td>
<td>8.04%</td>
<td>3,375</td>
<td>112.50%</td>
</tr>
<tr>
<td>55</td>
<td>3,000</td>
<td>0</td>
<td>0.00%</td>
<td>3,750</td>
<td>125.00%</td>
</tr>
</tbody>
</table>

주: \(NC(t) = 13.71\% \cdot TP(t)\) 그리고 \(AL(t) = 86.73\% \cdot TP(t)\).

18) 산정 예시에서 사용된 \% 단위는 소수점 이하 5째 자리에서 반올림한 것이며, 금액은 단위 금액을 기준으로 소수점이하 첫째 자리에서 반올림한 수치이다.
손익위험 관리 목표값 설정

<표 III-6> ENT 산정예시 I \(^{19}\)

<table>
<thead>
<tr>
<th>도달연령 (x)</th>
<th>(EFS(x, t))</th>
<th>(PSL(x, t))</th>
<th>(TSL(x, t))</th>
<th>(\frac{TFC(x, t)}{S(x-1, t)})</th>
<th>(AL(x, t))</th>
<th>(\frac{AL(x, t)}{S(x-1, t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>8,150</td>
<td>0</td>
<td>4,373</td>
<td>145.78%</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>7,589</td>
<td>356</td>
<td>4,308</td>
<td>135.00%</td>
<td>8.60%</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>7,066</td>
<td>619</td>
<td>4,244</td>
<td>124.39%</td>
<td>17.07%</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6,579</td>
<td>878</td>
<td>4,181</td>
<td>113.94%</td>
<td>25.42%</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>6,126</td>
<td>1133</td>
<td>4,118</td>
<td>103.64%</td>
<td>33.64%</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5,704</td>
<td>1385</td>
<td>4,057</td>
<td>93.49%</td>
<td>41.74%</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>5,311</td>
<td>1632</td>
<td>3,997</td>
<td>83.50%</td>
<td>49.72%</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4,945</td>
<td>1876</td>
<td>3,937</td>
<td>73.66%</td>
<td>57.58%</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>4,604</td>
<td>2117</td>
<td>3,878</td>
<td>63.96%</td>
<td>65.32%</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>4,287</td>
<td>2353</td>
<td>3,821</td>
<td>54.41%</td>
<td>72.95%</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3,992</td>
<td>2587</td>
<td>3,764</td>
<td>44.99%</td>
<td>80.46%</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>3,716</td>
<td>2816</td>
<td>3,708</td>
<td>35.72%</td>
<td>87.87%</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3,460</td>
<td>3043</td>
<td>3,652</td>
<td>25.69%</td>
<td>95.16%</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>3,222</td>
<td>3266</td>
<td>3,598</td>
<td>17.59%</td>
<td>102.34%</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3,000</td>
<td>3485</td>
<td>3,544</td>
<td>8.73%</td>
<td>109.42%</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3,000</td>
<td>3850</td>
<td>3,750</td>
<td>0.00%</td>
<td>125.00%</td>
<td></td>
</tr>
</tbody>
</table>

주: \(NC(t) = K \cdot TP(t) (K = 8.73\%)\) \(AL(t) = 64.82\% \cdot TP(t)\).

\(^{19}\) 산정 예시에서 사용된 % 단위는 소수점 이하 5째 자리에서 반올림한 것이며, 금액은 단위 금액을 기준으로 소수점이하 첫째자리에서 반올림한 수치이다.
표 III-7 ENT 산정예시 II

(단위: 만원)

<table>
<thead>
<tr>
<th>도달연령 ((x))</th>
<th>(EFS(x, t))</th>
<th>(PSL(x, t))</th>
<th>(TSL(x, t))</th>
<th>(\frac{TFC(x, t)}{S(x-1, t)})</th>
<th>(\frac{AL(x, t)}{S(x-1, t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6,019</td>
<td>0</td>
<td>2,339</td>
<td>77.98%</td>
<td>0.00%</td>
</tr>
<tr>
<td>41</td>
<td>5,727</td>
<td>256</td>
<td>2,406</td>
<td>73.74%</td>
<td>6.46%</td>
</tr>
<tr>
<td>42</td>
<td>5,449</td>
<td>454</td>
<td>2,475</td>
<td>69.38%</td>
<td>13.11%</td>
</tr>
<tr>
<td>43</td>
<td>5,185</td>
<td>657</td>
<td>2,545</td>
<td>64.90%</td>
<td>19.95%</td>
</tr>
<tr>
<td>44</td>
<td>4,933</td>
<td>866</td>
<td>2,618</td>
<td>60.29%</td>
<td>26.98%</td>
</tr>
<tr>
<td>45</td>
<td>4,694</td>
<td>1081</td>
<td>2,693</td>
<td>55.54%</td>
<td>34.21%</td>
</tr>
<tr>
<td>46</td>
<td>4,466</td>
<td>1302</td>
<td>2,770</td>
<td>50.67%</td>
<td>41.65%</td>
</tr>
<tr>
<td>47</td>
<td>4,250</td>
<td>1530</td>
<td>2,849</td>
<td>45.65%</td>
<td>49.31%</td>
</tr>
<tr>
<td>48</td>
<td>4,043</td>
<td>1764</td>
<td>2,930</td>
<td>40.49%</td>
<td>57.18%</td>
</tr>
<tr>
<td>49</td>
<td>3,847</td>
<td>2004</td>
<td>3,014</td>
<td>35.18%</td>
<td>65.27%</td>
</tr>
<tr>
<td>50</td>
<td>3,660</td>
<td>2252</td>
<td>3,100</td>
<td>29.72%</td>
<td>73.60%</td>
</tr>
<tr>
<td>51</td>
<td>3,483</td>
<td>2507</td>
<td>3,188</td>
<td>24.11%</td>
<td>82.16%</td>
</tr>
<tr>
<td>52</td>
<td>3,314</td>
<td>2768</td>
<td>3,279</td>
<td>18.33%</td>
<td>90.97%</td>
</tr>
<tr>
<td>53</td>
<td>3,153</td>
<td>3038</td>
<td>3,373</td>
<td>12.39%</td>
<td>100.03%</td>
</tr>
<tr>
<td>54</td>
<td>3,000</td>
<td>3315</td>
<td>3,469</td>
<td>6.28%</td>
<td>109.35%</td>
</tr>
<tr>
<td>55</td>
<td>3,000</td>
<td>3744</td>
<td>3,750</td>
<td>0.00%</td>
<td>125.00%</td>
</tr>
</tbody>
</table>

주: \(NC(t) = K \cdot TP(t) (K = 6.28\%) \) 그리고 \(AL(t) = 59.68\% \cdot TP(t) \).
손익위험 관리 목표값 설정

표 III-8 ENT 산정예시 III 21)

<table>
<thead>
<tr>
<th>도달연령 (x)</th>
<th>EFS(x, t)</th>
<th>PSL(x, t)</th>
<th>TSL(x, t)</th>
<th>(\frac{TFC(x, t)}{S(x-1, t)})</th>
<th>(\frac{AL(x, t)}{S(x-1, t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>13,261</td>
<td>0</td>
<td>9,612</td>
<td>320.40%</td>
<td>0.00%</td>
</tr>
<tr>
<td>41</td>
<td>11,926</td>
<td>511</td>
<td>8,964</td>
<td>287.11%</td>
<td>11.68%</td>
</tr>
<tr>
<td>42</td>
<td>10,725</td>
<td>868</td>
<td>8,359</td>
<td>256.07%</td>
<td>22.57%</td>
</tr>
<tr>
<td>43</td>
<td>9,644</td>
<td>1,201</td>
<td>7,795</td>
<td>227.12%</td>
<td>32.73%</td>
</tr>
<tr>
<td>44</td>
<td>8,673</td>
<td>1,511</td>
<td>7,270</td>
<td>200.12%</td>
<td>42.20%</td>
</tr>
<tr>
<td>45</td>
<td>7,799</td>
<td>1,801</td>
<td>6,779</td>
<td>174.95%</td>
<td>51.03%</td>
</tr>
<tr>
<td>46</td>
<td>7,014</td>
<td>2,071</td>
<td>6,322</td>
<td>151.47%</td>
<td>59.27%</td>
</tr>
<tr>
<td>47</td>
<td>6,307</td>
<td>2,323</td>
<td>5,896</td>
<td>129.57%</td>
<td>66.95%</td>
</tr>
<tr>
<td>48</td>
<td>5,672</td>
<td>2,558</td>
<td>5,498</td>
<td>109.15%</td>
<td>74.11%</td>
</tr>
<tr>
<td>49</td>
<td>5,101</td>
<td>2,777</td>
<td>5,127</td>
<td>90.11%</td>
<td>80.79%</td>
</tr>
<tr>
<td>50</td>
<td>4,587</td>
<td>2,981</td>
<td>4,781</td>
<td>72.36%</td>
<td>87.02%</td>
</tr>
<tr>
<td>51</td>
<td>4,125</td>
<td>3,172</td>
<td>4,459</td>
<td>55.80%</td>
<td>92.83%</td>
</tr>
<tr>
<td>52</td>
<td>3,710</td>
<td>3,349</td>
<td>4,158</td>
<td>40.35%</td>
<td>98.25%</td>
</tr>
<tr>
<td>53</td>
<td>3,336</td>
<td>3,515</td>
<td>3,878</td>
<td>25.95%</td>
<td>103.30%</td>
</tr>
<tr>
<td>54</td>
<td>3,000</td>
<td>3,669</td>
<td>3,616</td>
<td>12.52%</td>
<td>108.02%</td>
</tr>
<tr>
<td>55</td>
<td>3,000</td>
<td>3,966</td>
<td>3,750</td>
<td>0.00%</td>
<td>125.00%</td>
</tr>
</tbody>
</table>

주: \(NC(t) = K \cdot TP(t) (K = 12.52\%) \) 그리고 \(AL(t) = 70.38\% \cdot TP(t) \)

21) 산정 예시에서 사용된 % 단위는 소수점 이하 5째 자리에서 반올림한 것이며, 금액은 단위 금액을 기준으로 소수점이하 첫째자리에서 반올림한 수치이다.
<표 III-9> ATM 산정예시\(^{22)}\)

<table>
<thead>
<tr>
<th>도달연령 ((x))</th>
<th>(NC(x, t))</th>
<th>(\frac{NC(x, t)}{S(x-1, t)})</th>
<th>(AL(x, t))</th>
<th>(\frac{AL(x, t)}{S(x-1, t)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0</td>
<td>0.00%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>250</td>
<td>8.33%</td>
<td>250</td>
<td>8.33%</td>
</tr>
<tr>
<td>42</td>
<td>250</td>
<td>8.33%</td>
<td>500</td>
<td>16.67%</td>
</tr>
<tr>
<td>43</td>
<td>250</td>
<td>8.33%</td>
<td>750</td>
<td>25.00%</td>
</tr>
<tr>
<td>44</td>
<td>250</td>
<td>8.33%</td>
<td>1,000</td>
<td>33.33%</td>
</tr>
<tr>
<td>45</td>
<td>250</td>
<td>8.33%</td>
<td>1,250</td>
<td>41.67%</td>
</tr>
<tr>
<td>46</td>
<td>250</td>
<td>8.33%</td>
<td>1,500</td>
<td>50.00%</td>
</tr>
<tr>
<td>47</td>
<td>250</td>
<td>8.33%</td>
<td>1,750</td>
<td>58.33%</td>
</tr>
<tr>
<td>48</td>
<td>250</td>
<td>8.33%</td>
<td>2,000</td>
<td>66.67%</td>
</tr>
<tr>
<td>49</td>
<td>250</td>
<td>8.33%</td>
<td>2,250</td>
<td>75.00%</td>
</tr>
<tr>
<td>50</td>
<td>250</td>
<td>8.33%</td>
<td>2,500</td>
<td>83.33%</td>
</tr>
<tr>
<td>51</td>
<td>250</td>
<td>8.33%</td>
<td>2,750</td>
<td>91.67%</td>
</tr>
<tr>
<td>52</td>
<td>250</td>
<td>8.33%</td>
<td>3,000</td>
<td>100.00%</td>
</tr>
<tr>
<td>53</td>
<td>250</td>
<td>8.33%</td>
<td>3,250</td>
<td>108.33%</td>
</tr>
<tr>
<td>54</td>
<td>250</td>
<td>8.33%</td>
<td>3,500</td>
<td>116.67%</td>
</tr>
<tr>
<td>55</td>
<td>250</td>
<td>8.33%</td>
<td>3,750</td>
<td>125.00%</td>
</tr>
</tbody>
</table>

주1: 55세 도달 직전의 \(NC\) 값은 사후적립의 특성을 보여주는 것이며.
주2: \(NC(t) = 8.33\% \times TP(t)\) 그리고 \(AL(t) = 66.67\% \times TP(t)\).
주3: 예시 I, II, III 결과가 모두 동일.

\(^{22)}\) 산정 예시에서 사용된 \% 단위는 소수점 이하 5째 자리에서 반올림한 것이며, 금액은 단위 금액을 기준으로 소수점이하 첫째자리에서 반올림한 수치이다.
손익위험 관리 목표값 설정

<그림 III-2> PUM의 NC 비교 (S(x) 대비)

<그림 III-3> ENT의 NC 비교 (S(x) 대비)
<그림 III-4> PUM의 AL 비교 (S(x) 대비)

<그림 III-5> ENT의 AL 비교 (S(x) 대비)
손익위험 관리 목표값 설정

<그림 III-6> PUM, ENT, ATM의 NC 비교(예시 I)

<그림 III-7> PUM, ENT, ATM의 AL 비교(예시 I)
IV. 연기금 투자위험 최적관리전략

1. 개요

본 연구에서는 설정한 기본 전제조건, 특히 가정(B4) 및 (B5)에 근거한 연기금 투자위험 관리에 대해서 다룬다. 즉 연구의 범위는 최적 자산배분전략을 수립하는 것이며 이에 적용되는 합리적 판단기준은 (B5)에서 명시하고 있는 평균-분산 기준이다.

대부분의 경우, 현대 포트폴리오이론에서는 평균-분산(혹은 평균-표준편차)분석에 근거하여 자산확당전략을 수립하면 충분하다고 가정하고 있다. 또한 자산운용수익률이 가정(B4)에서 설정하고 있는 것처럼 정규분포를 따르다고 가정함이 일반적이다. 물론 개별 자산의 경우 로그정규분포(log normal distribution), (일별, 주별 등) 단기 자산운용수익률의 경우 왜도(skewness)등이 발견되는 실증분석 결과가 상당분인 상존하지만, (월별, 분기별, 년별 등) 중장기 자산운용수익률을 중요시하는 연기금 펀드의 수익률 분포는 정규분포에 매우 근접(approximately normal distribution)한다는 것이 실증분석결과로 잘 나타나고 있다23). 이와 같은 기본전제가 있어, 아래의 <그림 IV-1>에서 도표화한 것처럼 우리는 DB 연기금 자산의 투자전략을 수립하고자 한다. 연기금 투자자들은 그들이 최종적으로 보유하고자 하는 투자포트폴리오를 선정하기 위해서 상상적으로 두 가지 방식을 채택한다. 첫째, Bottom-Up 방식은 투자하고자 하는 투자대상을 선정하고 그 다음에 연기금 자산을 배분하는 방식으로 이는 앞에서 이미 언급한 바와 같이 실증분석결과(Schneider et al(1997) 참조)와는 상당부분 외하가 있는 접근법으로 실무적 차이에서 활용도가 높은 접근법이다. 다음으로, 우리가 관심을 가지고 채용하고 있는 Top-Down 방식으로 이는 실무에서 보편적으로 채용하고 있는

23) 이영기·남상구 공역, 투자론 5판, pp 193-196, 2002 참조
접근법이다. 먼저 무위험자산과 위험자산에 대한 연기금 자산 할당비율을 결정하고 다음으로, 각 자산의 구성항목을 선정하는 접근법이다. 앞에서 기술한 바와 같이 본 연구보고서에서는 최적 자산할당비율에 대해서만 논의하고자 한다.

〈그림 IV-1〉 자산배분전략 컨설팅

위험자산

- 기업주의 연기금 투자목표 설정 (퇴직연금사업자의 포괄적 수탁책무 하에서, 기업재무상태, 자본시장 / 산업 동향 분석 후)
- 기대수익률
- 위험회피도(위험허용도)

무위험자산

위의 〈그림 IV-1〉에서 위험자산(risky assets)은 주식, 회사채, 부동산, 뮤추얼펀드(mutual funds), 사모펀드(private equity funds: 헤지펀드를 포함) 등에 투자된 연기금자산을 의미한다. 한편 무위험자산(riskless assets)은 정기예금, (단기)국공채, 양도상환예금증서(Certificate of Deposit), 보증사채 등 채무불이행위험이 거의 없고 어떠한 상황에서도 비교적 확정된 투자 수익률을 제공하는(즉, 투자위험 ≈ 0%) 투자자산에 투여된 연기금자산을 의미한다. 물론 현실세계에서 절대적으로 무위험자산이 존재할 수는 없다. 퇴직연금사업자가 투자가이드라인을 제시할 경우 법적으로 요구되는 포괄적 수탁책무(basic fiduciary rules)로서 분산투자의무 (diversification of investments)를 연급할 수 있다. 따라서 기업주의 현제 및 향후 재무상태 및 산업별 경기 변동성 등을 고려하여 기업주의
 재무적 부담 변동성을 적게(즉, 투자위험을 최소화)하는 분산투자 전략을 제시하여야 한다. 즉, 연기금 투자 컨설팅의 요제는 바로 선관주의 투자의무(prudent man rule)로 집약된다. 다음에서는 이러한 관점에서 보편적으로 채용되고 있는 평균-분산 분석 접근법에 대해 구체적으로 살펴보기로 한다.

2. Markowitz, Tobin, Samuelson의 평균-분산 모형

가. Markowitz의 평균-분산 기준

주지하는 바와 같이, 현대 포트폴리오이론(modern portfolio theory)의 시작점은 일반적으로 마코비츠(H. Markowitz)가 1952년 발표한 “Portfolio Selection” 논문에서 찾을 수 있다24). 즉, 마코비츠 지배원리(Markowitz’s Dominant Principle)에 의해 투자자들은 자본시장에서 거래되는 위험자산에 대한 투자 포트폴리오의 선정을 기대수익률과 위험(분산 혹은 표준편차에 의해 측정)에 의한 평균-분산기준(mean-variance criterion)에 의해 선정한다는 것이다. 아래의 <그림 IV-2>에서 호(AE)가 이러한 기준에 의해 선정된 효율적 포트폴리오 집합체에 해당한다. 이를 마코비츠의 효율적 투자선(Markowitz’s efficient frontier)이라고 한다. 이 경우 DB 연기금 투자자인 기업의 관점에서 위험에 대한 선호도에 따라 효율적 투자선상의 위험포트폴리오를 선정하게 된다. 예를 들어, 위험에 대한 허용도(risk tolerance level)가 우선적으로 확정되어 있

연기금 투자위험 최적관리전략

는 경우 가용 가능한 위험포트폴리오 집합체(feasible risky portfolio set)는 E를 제외한 {A, B, C, M, D}가 될 것이다. 그러나 연기금 펀드 운용자는 중도 탈퇴급여 및 정상 퇴직급여 등 현금유동성을 일정부분 확보하여야 하는 관계로 정기예금 혹은 단기 국공채와 같은 무위험자산에 대한 투자지분을 유지함에 보편적이다.

연기금 투자 컨설팅 과정에서 투자대상은 위험자산뿐만 아니라 무위험자산도 포함하는 효율적 분산투자를 전제로 연기금을 운용하여야 함을 강조하여야 한다. 따라서 무위험자산이 존재하게 될 경우 기존의 효율적 투자선인 호(AE)를 지배하는 새로운 효율적 투자선은 반직선(OM)이 되며, 이를 CAPM이론에서는 자본시장선(Capital Market Line)이라고 한다. 이는 무위험자산이 존재할 경우의 마코비츠의 효율적 투자선에 해당한다고 그 의미를 부여할 수 있다.

<그림 IV-2> 위험자산과 무위험자산의 효율적 자산배분

![Efficient Asset Allocation Diagram]

- 기대수익률 (μ)
- 위험허용도 (σ)
- 무위험 수익률 (r)
- 효율적 투자선
- P1(소극적 투자자: $0 < \alpha < 1$)
- P2(적극적 투자자: $\alpha > 1$)
위 그림에서 위험허용도는 펀드 관리자(투자자)가 예상되는 미래 기대수익률로부터 위험을 어느 정도까지 수용할 수 있는지를 나타내는 위험수준을 나타낸다. 즉, 투자자의 위험성향(risk preference)에 따라 결정되는 위험-수익률 선택문제(risk-return tradeoff effect)이다. 선관주의 투자자라는 펀드 관리자는 보수적 입장을 취함이 일반적이다. 특히 연기금 관리자의 경우 예정수익률(assumed actuarial rate)에 근거하여 연금 지급상황에 따라 미지급사태 혹은 지급지연사태가 발생하지 않도록 위험허용도를 설정하여야 할 것이다. 마지막으로, 연기금의 현금유동성 문제를 해결하기 위해서는 반드시 포트폴리오 구성비율은 “0% < α < 100%”인 소극적 투자자(passive investor)의 입장을 견지하여야 하기 때문에, 가용 가능한 위험허용도는 M점 이내로 설정되어야 현실적 의미를 부여할 수 있다.

나. Tobin의 평균-분산 정리

이번 절에서는 마코비치의 효율적 투자선 혹은 자본시장선이 주어진 경우 연기금 자산의 투자대상 선정과정에 대해 살펴보기로 한다.

투자 컨설팅의 최종단계에서 기업주는 자신의 기대효용을 최대화하는 자본시장선상의 임의의 포트폴리오를 선정하게 될 것이다. 일반적으로, DB 연기금 투자자들은 위험회피적이지만 투자자의 위험선호도에 따라 선정하는 최적포트폴리오(optimal portfolio)는 다를 수가 있다. 이를 설명하는 경제학적 도구로서 일반적으로 효용함수(utility function) 개념25)을 도입하여 설명한다. 현실적으로 위험회피형 투자자(risk-averter):

25) 효용함수의 개념은 스위스의 수학자이며 물리학자인 Daniel Bernoulli (1700-1782)의 "세인트 펑투르스비르의 파라독스(Saint Petersburg Paradox)"에서 출발한 다. 투기를 설명하던 스위스 밴젤대학교(Basel University) 수학과 교수로 재직 중, 러시아의 세인트 펑투르스비르 대학(Saint-Petersburg State University)에 교환교수로 활동하면서 피터스버그 과학아카데미에서 발표한 논문에서 당시까지 통용되어오던 부
라세 하더라도 개인별 효용함수는 각자 다를 수가 있으므로 논리적 한계가 있을음을 우선 인지할 필요성이 있다. 1947년 발간된 von Neumann & Morgenstern의 대표 저서 「Theory of Games and Economic Behavior」에서 그들은 기대효용가설(expected utility hypothesis)을 제기하면서, 위험을 수반하는 최적투자결정(optimal risk decisions)은 기대효용의 극대화 기준에 의하는 것이 어떠한 기준보다 유용하다는 것을 입증하였다. 이들의 가설은 지금까지 불확실성에서의 투자결정이론으로서 일반적으로 받아들여지고 있는 이론으로 정립되었다. 물론 정확한 투자자들의 정확한 기대효용값을 산출하기 위해서는 우선 효용함수의 형태가 정해져야 하며, 다음으로 미래 예상투자수익률의 분포에 대한 정보가 주어져야 한다. 현실적으로, 이 두 조건을 만족하기는 불가능하므로 유용한 범위내에서 기대효용을 산정할 수 있는 간편한 방법의 개발이 필요하게 된다.

이러한 현실적 한계점에 대한 (제한적) 해결책을 Tobin(1958)이 발표하게 되었다. 즉, 마코비츠의 평균-분산기준에 특정 효용함수를 도입함으로써 효용극대화 전략을 수립할 수 있는 이론적 근거를 제공하고 있다. 본 연구에서는 이를 Tobin의 평균-분산 정리(mean-variance theorem)라고 부르기로 한다. 좀 더 구체적으로 살펴보면,

① 투자자의 효용함수가 2차함수로 특징 지워지는 경우
② 포트폴리오의 미래수익이 정규분포를 따르는 경우

상기 ① 혹은 ②의 경우, 기대효용은 다음과 같이 표현됨을 토빈이 최초로 증명하였다(물론 논리적과정에서 모호성을 제거하는 학자들도 있음). 즉, 임의의 포트폴리오의 미래수익을 나타내는 확률변수를

R이라고 하면 투자자의 기대효용은 **R**의 기대수익과 분산의 함수로 표현된다. 즉,

\[E[U(R)] = f(E(R), \text{Var}(R)) \]

그러나 토빈의 연구는 기본 전제 ㉠과 ㉡에서 출발하여 도출된 결과라는 한계로 인해 일반성의 문제가 상존하게 된다. 아울러, ㉠의 경우 합리적 투자자의 입장을 설명하기에는 현실적 부족함이 있다는 단점이 있다. 그러나 이러한 제약점을 극복할 수 있는 근거를 **Samuelson(1970)**이 제공함으로써 평균-분산 접근법은 이론적 완성도를 제고하게 된다.

다. **Samuelson**의 평균-분산 분석

샤뮤엘슨(1970)의 논문이 발표되기 전까지, 마코비츠(1952), 토빈(1958)으로 대표되는 평균-분산 접근법은 발표 이후 10여년간 많은 학자들에 의해 일반성이 부족하다는 지적을 받아왔다. 이는 이미 지적한 바와 같은 “토빈의 정리”의 기본 가정의 제약점 및 증명과정에서 발생하는 다소의 모호성에 기인한 결과로 판단된다. 이러한 일반성 부족문제를 이론적 증명과정을 통하여 근본적으로 해결하는 연구결과가 발표되었고, 이는 다음과 같은 주요 연구결과를 제시하였기 때문이다. 데말론은 상당히 복잡한 계량 경제학적 접근법을 사용하고 있다. 다소

26) 대표적으로 2차함수가 설정되면 효용의 불포화만족(non-satiation)에 위배됨.
27) **P**aul **A**. Samuelson(1915-)은 1940년에 약관 25세에 MIT 경제학과 조교수로 시작하여 현재 교수로 재직 중이며, 미국 민주당의 뉴딜정책 경제학자로 유명하다. 화폐경제, 금융경제, 거시 및 미시 경제 등 경제학의 전 분야에 걸쳐 놀라운 업적을 보이고 있으며, 이러한 업적으로 노벨 경제학상(1970)을 수상함.
의 무리가 있지만 간략히 살펴보면, 적용된 기본가정은 위험회피형 효용함수(risk-averse utility function)에 대하여 포트폴리오의 미래수익이 밀집성 분포(compact or small-risk distribution)를 따른다고 전제하고 있다. 또한 임의의 효용함수에 대하여 테일러 전개식(Taylor series expansion)을 적용하여 기대효용을 극대화하는 자산배분문제를 설정하고 있다. 주요 연구결과는 다음으로 요약 된다30).

첫째, 기대효용 극대화 관점에서 포트폴리오 자산배분결정을 할 경우, 평균에 대한 3차 이상의 적률(moments)은 무시할 수 있다.
즉, \(E(R) \equiv \pi, \ E[(R-\pi)^n] \equiv M_n \ (\mu\text{에 대한 }n\text{차 적률, nth moment about mean }\mu)\)에 대하여, \(M_4, M_5, M_6, \ldots \approx 0 \ (as \ \sigma \to 0)\).
둘째 2차 적률(분산)은 투자자의 기대효용에 평균만큼 중요도가 높다.
즉, \(E(U(R)) = f(E(R), Var(R))\)라는 토빈의 결과를 더욱 강화하는 결과로 해석할 수 있다.
중합적으로 정리하면, 마코비츠의 평균-분산 기준은 개념적 출발점에서 시작하여 토빈에 의해 수리적으로 보완되고 최종적으로 사뮤엘슨에 의해 일반성이 강화된 것으로 이해할 수 있다.

3. 평균-분산 무차별 근사곡선 도출

이미 개요에서 언급한 것처럼, 상기 현학자들의 종합적 결과는 평균-분산 접근법에 의해 최적 자산배분을 결정함에 무리가 없음을 알 수 있었다. 아울러, 연기금 포트폴리오 수익률이 정규분포성을 갖는다고 설정

29) 포트폴리오의 미래수익 확률변수 \(R \)이 밀집성 분포를 따름은 관련 위험이 매우 작아지면 따라(\(\sigma \to 0 \)) 기대수익 \(\mu \) 중심으로 밀집되는 분포를 의미한다. 부연하면 일반성을 유지하기 위해서, 정규분포와 같은 극단적인 분포를 설정하고 있지만, 왜도(skewness) 및 첨도(kurtosis)가 매우 작은 분포를 설정하고 있을음을 알 수 있다.
30) 이영기·남상구 공역, 투자론 5판, 2002, pp 192-193참조.
하여도 현실적 일반성을 해하지 않는다는 것을 알 수 있었다.

그러나 상기의 현학자들은 구체적 기대효용함수를 제시하지 않고 있다. 여기에서 우리는 상기의 문헌연구 결과에 근거하여 본 연구에서 채용할 무차별곡선의 함수 형태를 도출하고자 한다.

① 토빈에서처럼, 연기금 자산의 일정 (중장기) 단위기간의 투자수익률 (i_t)은 정규분포(μ^*, σ^2)를 따른다. 단, 제II장에서 기술한 가정(B4)을 적용하면, $\mu^* = r + \alpha \cdot \mu^*, \sigma^2 = (\alpha \cdot \sigma)^2$임을 알 수 있다.
② 샤무엘슨에서처럼, 임의의 불특정 위험회피형 효용함수 $U(\cdot)$을 설정하고 기대수익률(μ^*) 주위에서 미분 가능하다.

상기 기본가정 ① 및 ②을 적용하면 다음과 같은 근사식을 구할 수 있다. 즉, 예상 투자수익률 효용함수에 대하여, μ^*에 대한 테일러 전개식을 적용한 결과이다.

31) 효용함수 자체의 완만한 연속성(smooth continuity)을 전제하기에는 현실적으로 무리가 있다는 주장도 있다. 대표적으로 Lipman(1989)은 많은 투자자들의 경우 효용함수는 연속성이 있는 것이 아니라 다수의 점프가 존재하는 불연속성이 존재하므로 미분에 의한 테일러 전개식 접근법은 현실적 문제가 내재한다고 주장하였다.
32) 평균-분산 좌표상에서 기대효용이 같은 (평균, 분산) 좌표점을 연결한 선을 의미한다.
연기금 투자위험 최적관리전략

\[U(i_t) \approx U(\mu^*) + U'(\mu^*) \cdot (i_t - \mu^*) + \frac{U''(\mu^*)}{2!} \cdot (i_t - \mu^*)^2 + \text{나머지고차항} \]

(IV-1)

상기 식에서 기대값을 취하면,

\[E[U(i_t)] \approx U(\mu^*) + U'(\mu^*) \cdot E[(i_t - \mu^*)] + \frac{U''(\mu^*)}{2!} \cdot E[(i_t - \mu^*)^2] + E[\text{나머지고차항}] \]

(IV-2)

다음으로, \(E[(i_t - \mu^*)^n] \equiv M_n, \ n = 1, 2, 3, \ldots \) 이라고 두면,

\[E[\text{나머지고차항}] = \frac{U^{(3)}(\mu^*)}{3!} M_3 + \frac{U^{(4)}(\mu^*)}{4!} M_4 + \frac{U^{(5)}(\mu^*)}{5!} M_5 + \frac{U^{(6)}(\mu^*)}{6!} M_6 + \ldots \]

\[= 0 + \frac{U^{(4)}(\mu^*)}{4!} (3\sigma^4) + 0 + \frac{U^{(6)}(\mu^*)}{6!} (15\sigma^6) + \ldots \]

(IV-3)

여기에서, 홀수 적률은 모두 평균(\(\mu^* \))에 대한 비대칭 정도(왜도 값)를 나타내는 측도이므로 정규분포의 대칭성으로 인하여 모두 0이 됨은 당연한 결과이다. 또한 짝수 적률은 평균에서 퍼져있는 정도를 측정하는 것 즉, 예상투자수익률이 평균수익률을 벗어나는 정도를 측정하는 것이므로 투자수익률의 불확실성을 나타낸다고 볼 수 있다. 부연하면, 미래의 예상투자수익률의 위험을 측정하는 것이다.

그러나 아래 <표 IV-1>에서 알 수 있듯이, 포트폴리오 구성이 소형주식 및 대형주식을 위험자산으로 분류, 국공채를 무위험자산으로 분류하더라도
도 포트폴리오의 예상수익률의 4차 적률, 6차 적률, 8차 적률 등 고차 적률은 평균수익률에 영향을 주지 않을 만큼 수치가 미미함을 알 수 있다. 따라서 평균과 분산만 그 중요도를 인정하고 나머지 고차항의 중요도를 무시하는 근사적 수치(0의 값을 부여)는 현실적 적합성이 있다고 할 수 있다. 이는 수치적으로 샤뮤엘슨의 주요 연구결과를 한층 더 강화하는 결과로 평가받기에 충분하다고 판단된다.

<표 IV-1> 1926년~2002년 미국 투자수익률의 평균 및 표준편차

<table>
<thead>
<tr>
<th>구분</th>
<th>소형주식</th>
<th>대형주식</th>
<th>장기국채</th>
<th>중기국채</th>
<th>단기국채</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균(μ)</td>
<td>17.74%</td>
<td>12.04%</td>
<td>5.68%</td>
<td>5.35%</td>
<td>3.82%</td>
</tr>
<tr>
<td>표준편차(σ)</td>
<td>39.30%</td>
<td>20.55%</td>
<td>8.24%</td>
<td>6.30%</td>
<td>3.18%</td>
</tr>
</tbody>
</table>

주1: 국채는 미국 국무성 채권(T-Bill)을 의미한다.
주2: 소극적 투자자의 입장을 견지하는 DB 연금 펀드 관리자 관점에서 살펴보면, 대표적 무위험자산은 단기국채(1개월 T-Bill), 대표적 위험자산은 대형주식으로 설정할 수 있을 것이다.

결론적으로, 논리의 일반성을 해하지 않으면서 우리는 평균-분산 분석을 다음과 같은 단순화 모형으로 대체할 수 있을 것이다.

\[
E[U(i_1)] \approx U(\mu^*) + \frac{U''(\mu^*)}{2!} \cdot E[(i_1 - \mu^*)^2] \quad (IV-4)
\]

위 식에서 기대효용함수의 형태를 확정하기 위해서는 두 가지 개념을

33) 실제로 정규분포의 적률생성함수(moment generating function)를 이용하여 계산한 결과, 예상한 대로 훌수 적률은 모두 0이며 (∵ 정규분포의 μ*에 대한 대칭성), 짝수 적률은 다음과 같은 규칙성이 있을 발견할 수 있다. 즉,

\[M_n = 1 \times 3 \times 5 \ldots \times (n-1) \times \sigma^{**}, \quad n = 2, 4, 6, \ldots. \]
도입할 필요성이 있으며, 이에 대한 논리적 합리성을 견지하여야 할 것이다. 물론 도입될 개념적 해석은 마코비츠, 토빈 및 사무엘슨의 연구결과, 즉 평균-분산 분석에 의한 최적 자산배분전략과 일관성을 유지하여야 할 것이다.

첫째, $U(\mu^*)$에 대한 함수형태를 설정하기 위해서 그 의미를 파악할 필요성이 있다. 투자자의 기대효용에 대하여 투자자에게 주어지는 일종의 기대보상(reward)으로 설명할 수 있을 것이다. 왜냐하면, 두 번째 항

$$\frac{U''(\mu^*)}{2!} \cdot E[(i_i - \mu^*)^2]$$

는 기대보상에 대한 불확실성, 즉 기대보상의 위험정도를 나타내는 것으로 그 의미를 부여할 수 있기 때문이다. 이와 같은 측면을 고려하여 본 연구에서는 다음과 같이 정의한다.

$$U(\mu^*) \equiv E(i_i) \quad (IV-5)$$

둘째, $\frac{U''(\mu^*)}{2!} \cdot E[(i_i - \mu^*)^2]$에 대한 함수형태를 설정하기 위해서 그 의미를 파악하여야 한다. 우선, DB 연기금 투자자는 보수적 입장을 견지하는 위험회피형이므로, 한계효용체감의 법칙(law of decreasing marginal utility)이 적용된다. 즉, $U''(\mu^*) < 0$ 이다. 또한, 한계효용체감의 정도는 투자자들의 특성, 위험-보상 특성(risk-reward characteristics), 위험회피 정도가 다르게 나타날 것이다. 이러한 위험회피 정도를 나타내는 위험회피계수(risk aversion coefficient) λ을 도입할 필요성이 있다.

참고 사항으로 투자자들의 위험 선택 유형에 따른 위험회피계수의 특성은 다음으로 정리된다.
<표 IV-2> 투자자 유형별 위험회피계수

<table>
<thead>
<tr>
<th>구분</th>
<th>위험선호형</th>
<th>위험중립형</th>
<th>위험회피형</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ값</td>
<td>λ < 0</td>
<td>λ = 0</td>
<td>λ > 0</td>
</tr>
</tbody>
</table>

주1: 위험회피 혹은 위험선호 정도가 클수록, λ 절대값은 더욱 커진다.
주2: 위험회피형에서 재무적으로 안전적인 투자자(financially secure investors)일수록 일반적으로 λ값은 작다.

본 연구에서 우리가 관심이 있는 것은 위험회피형 투자자이므로, 식 (IV-4)에서 투자자의 특성에 따라 평균(μ∗)에 대한 위험회피 정도를 측정하는 측정치를 정의할 필요성이 있다. 경제학에서 일반적으로 사용되고 있는 평균(μ)에 대한 위험회피계수 A(μ∗)는 다음과 같이 정의된다. 즉,

\[A(\mu^*) = -\frac{U''(\mu^*)}{U'(\mu^*)} \]

(IV-6)

여기에서, 분모 U'(μ∗)는 A(μ∗)을 평준화(normalization)하기 위해 도입된 항이다. 왜냐하면 동일한 효용함수에 대해서는 동일한 위험회피계수를 산정하는 것이 논리적으로 타당하므로, 효용동가함수들(equivalent utility functions)에 대해서 동일한 값을 부여하기 위해 도입된 일종의 조정계수의 역할을 하기 때문이다(Luenberger(1998, pp230-233) 참조).

부언 설명하면, 임의의 효용함수 U(x)와 U(x)의 일차선형 효용함수 \[V(x) = b + a \cdot U(x) \] (단, a > 0)는 효용동가함수이며, 위험회피계수 또한 동일함을 쉽게 확인할 수 있다. 그러므로 한계효용체감의 도수 \[U''(\mu^*) \] 가 개별 투자자들의 실제적인 위험회피정도를 측정한다고 볼 수 있다.

34) 엄밀히 표현하면 Arrow-Pratt absolute risk aversion coefficient라고 함. 또한, \[T(\mu^*) = \frac{1}{A(\mu^*)} \] 를 위험허용도(heits tolerance levels)라고 정의하기도 함(Borch, 1990, p42).
있다. 우리는 이와 같은 논리적 근거에서 위험회피계수를 다음과 같이 정의한다. 즉, 식(IV-4)에서

\[U''(\mu^*) = -\lambda \] \hspace{1cm} (IV-7)

실제로 미국 자본시장에서의 광범위한 실증분석 결과에 의하면, 위험회피형 투자자들의 위험회피계수는 일반적으로 2.0~4.0 수준의 값을 갖는 것으로 보고되고 있다\(^{35}\).

다음으로, \(\frac{E[(i_t - \mu^*)^2]}{2} \) \((= \frac{\sigma^{*2}}{2})\)의 수리적 의미를 파악할 필요성이 있다. 실제로 투자자들의 경우 기대투자수익률 혹은 평균에 못 미칠 가능성이 대해 관심을 집중하게 된다. 이를 다운사이드 위험(downside risk 혹은 shortfall risk)이라고 한다. 따라서 예상 투자수익률의 정규성은 가정하였으므로, 투자가 실제로 보상을 바라는 위험은 바로 평균의 왼쪽 부분에서 투자성과가 발현될 가능성이 다. 그러므로, 투자가 위험-보상 관계에서 관심의 대상이 되는 위험범위는 전체 총량위험 \((\sigma^{*2})\)이기보다는 다운사이드 위험 \((\frac{\sigma^{*2}}{2})\)으로 한정된다는 의미이다.

이상의 논의를 종합적으로 정리하면, 우리가 채용하고자 하는 기대효용함수는 다음 식으로 확정된다. 즉,

\[E[U(i_t)] = E(i_t) - \frac{\lambda}{2} \cdot Var(i_t) \] \hspace{1cm} (IV-8)

본 연구에서는 우리는 상기식을 평균-분산 무차별 근사곡선(mean-variance approximate indifference-curve)이라고 부르기로 한다. 주지하는 바와 같이, 상기 식은 마코비츠-토빈-사뮈엘슨의 평균-분산 분

\(^{35}\) Bodie et al.(2005, p213) 참조.
석 접근법과 일치하며 투자론에서 일반적으로 채용되는 간편 모형과도 일치함을 알 수 있다.
다음 절에서는 본 논문과 모건스텐의 기대효용 가설에 근거하여, 최적자산배분 결정에 대해 다룬다.

4. 최적 연기금자산 배분 전략

지금까지의 논의의 결과는 기대효용 극대화 문제를 구축하고 포트폴리오 자산별 최적 구성비율을 도출하는 것으로 귀결된다. 우선, 이해의 편의를 위하여 제II장에서 기술한 가정(B4)을 요약하여 다시 정리하면, 우리의 자산배분 전략의 유형 및 예상투자수익률의 분포에 대한 기본 구조는 아래와 같다.

<table>
<thead>
<tr>
<th>단위투자기간</th>
<th>무위험자산</th>
<th>위험자산</th>
</tr>
</thead>
<tbody>
<tr>
<td>투자구성비</td>
<td>$1 - \alpha$</td>
<td>α</td>
</tr>
<tr>
<td>투자수익률</td>
<td>$r \ (r > 0)$</td>
<td>$r + \epsilon_{t+1}, \epsilon_{t+1} \sim iid \ N(\mu > 0, \sigma^2 < \infty)$</td>
</tr>
</tbody>
</table>

물론, 논의의 일관성 차원에서 예상투자수익률(i_t)에 대한 평균 및 분산을 위한 기본구조에 맞추어 재산정하여야 한다.
최종적으로, 우리의 효용극대화를 위한 최적 자산배분 문제는 다음과 같이 표현됨을 알 수 있다.

\[
\text{Max}_{\alpha} \left\{ E(i_t) - \frac{\lambda}{2} \cdot \text{Var}(i_t) \right\}
\]

제약식 : \[E(i_t) = r + \alpha \cdot E(\epsilon_t) = r + \alpha \cdot \mu, \]
\[\text{Var}(i_t) = \alpha^2 \cdot \sigma^2 \]
우리의 목적함수인 기대효용은 α에 대한 2차 함수이고, 2차 항의 계수가 음수(-\(\frac{\lambda}{2}\))임을 쉽게 확인할 수 있다. 따라서 α에 대하여 미분을 취하여 0으로 두면, 우리는 유일한 최적 α (이하 α^*라고 표기함)을 구할 수 있다. 즉,

$$\alpha^* = \frac{\mu}{\lambda \cdot \sigma^2}$$ \hspace{1cm} (IV-10)

도출된 최적 위험자산 구성비율(α^*)은 분산에 의해 측정된 위험과 투자자의 위험회피 정도에 대해 반비례함을 보여주고 있다. 아울러, 위험자산투자에 따르는 보상적 차원의 위험 프리미엄(risk premium)인 “μ”에 정비례하지만 위험프리미엄의 분산(σ^2)에 반비례하다는 것을 알 수 있다.

다음 절에서는 퇴직연금 도입 1년의 성과에 해당하는 퇴직연금 적립금 현황(금융감독원 퇴직연금 종합안내 자료)에 근거하여 계략적으로 적립금 자산배분 운용 현황에 대해 살펴보기로 한다.

5. 퇴직연금 자산배분 현황

퇴직연금제도를 도입한 1년의 계량적 성과는 퇴직연금 적립금 규모로 추정할 수 있을 것이다. 현재, 금융감독원 홈페이지에서 ‘퇴직연금종합 안내’란을 설정하여 별도로 운영하고 있으며 필요한 제도설명, 금융기관별 운용실적 등 필요한 자료를 공시하고 있다.

여기에서 우리는 금융기관별 퇴직연금 적립금 현황(예를 들어 아래의 <표 IV-3>)을 참조하여 금융기관별 자산운용현황에 대해서 파악하고자 한
다. 단, 공시되는 자료가 DB 퇴직연금만 별도로 제시되고 있지 않은 관계로 계략적 현황에 대해서만 살펴보기로 한다(아래의 <표 IV-4> 참조). 왜냐하면, 아직까지 운용실적(운용 자산별 투자수익률의 평균 및 분산 등)에 대한 결과가 보고되고 있지 않고 사용자 및 펀드관리자의 위험 회피 계수에 대한 객관적 정보를 확보할 수 없는 상황이므로 최적 위험자산 구성비율을 제시할 수 없기 때문이다.

<표 IV-3> 퇴직연금 적립금 현황(전 금융권 합계)

<table>
<thead>
<tr>
<th>구분</th>
<th>원리금보장</th>
<th>실적배당</th>
<th>기타</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>원리</td>
<td>적정</td>
<td>재 권</td>
<td>보험상품</td>
<td>간접</td>
</tr>
<tr>
<td>년월</td>
<td>예/적정</td>
<td>재권</td>
<td>보험상품</td>
<td>금리형</td>
</tr>
<tr>
<td>0512</td>
<td>2,601</td>
<td>-</td>
<td>4,620</td>
<td>149</td>
</tr>
<tr>
<td>0601</td>
<td>10,120</td>
<td>-</td>
<td>4,981</td>
<td>568</td>
</tr>
<tr>
<td>0602</td>
<td>13,548</td>
<td>-</td>
<td>8,417</td>
<td>657</td>
</tr>
<tr>
<td>0603</td>
<td>24,602</td>
<td>-</td>
<td>11,244</td>
<td>1,036</td>
</tr>
<tr>
<td>0604</td>
<td>37,614</td>
<td>39</td>
<td>13,486</td>
<td>1,800</td>
</tr>
<tr>
<td>0605</td>
<td>51,177</td>
<td>39</td>
<td>21,318</td>
<td>1,825</td>
</tr>
<tr>
<td>0606</td>
<td>73,872</td>
<td>39</td>
<td>26,535</td>
<td>2,141</td>
</tr>
<tr>
<td>0607</td>
<td>90,443</td>
<td>40</td>
<td>34,836</td>
<td>2,763</td>
</tr>
<tr>
<td>0608</td>
<td>98,322</td>
<td>38</td>
<td>73,669</td>
<td>3,043</td>
</tr>
<tr>
<td>0609</td>
<td>111,060</td>
<td>39</td>
<td>245,170</td>
<td>3,528</td>
</tr>
<tr>
<td>0610</td>
<td>128,745</td>
<td>39</td>
<td>266,530</td>
<td>4,040</td>
</tr>
<tr>
<td>0611</td>
<td>157,587</td>
<td>39</td>
<td>292,331</td>
<td>4,872</td>
</tr>
</tbody>
</table>

주1: 금융감독원 공표자료에 의하면 DB, DC, IRA별로 자산운용 실적을 구별하고 있지 않음. 따라서 상기 자료는 퇴직연금 적립금 전체의 자산운용 실적임.
주2: 대기자금(고유계정대, 발행어음 등)이며 0610, 0611자료는 추정치임.
자료: 금융감독원 퇴직연금종합안내 자료(2007.01.09) 재구성

금융권별 연기금 자산 배분 전략은 위험자산 구성비로 대별될 수 있다. 물론 위험자산과 무위험자산에 대한 구분의 모호성이 상존하는 문제점이 있지만, 금융권별 자산배분전략의 차별성을 제시하기에 충분하다고 판단된다. 아래의 <표 IV-4>에서 제시된 바와 같이, 특정적으로
제시되고 있는 금융권은 손해보험업과 증권업임을 알 수 있다.

우선, 손해보험업은 생명보험업처럼 DB 적립금이 대부분을 차지하고 있음에도 불구하고 자산배분전략은 보험에 비해 아주 보수적임을 알 수 있다. 이는 보험업이 실적배당형 상품을 운용해 본 경험이 미친함에 연유하는 것으로 판단된다. 다음으로, 증권은 은행과 대별해서 비교할 수 있을 것이다. 즉, 두 금융권 모두 DC 적립금이 대부분을 차지하고 있지만, 증권업 특성상 실적배당형 투신상품에 치중하고 있음을 알 수 있다. 결론적으로, 금융권별 차별화 전략을 실행하고 있음은 금융권별로 집중하는 연금건설방식의 차이에서 발생한다고 판단된다.

결론적으로, 금융권별 차별화 전략을 실행하고 있음은 금융권별로 집중하는 연금건설방식의 차이에서 발생한다고 판단된다. 이는 퇴직연금제도 운용에서 강조되고 있는 금융권별 연금건설방식 과정에서 제시되는 위험회피 계수가 금융기관별로 차별성이 발생하기 때문인 것으로 추론된다.

마지막으로 미국의 자본시장의 투자운용실험을 참조하여, 보수적 입장에서의 위험자산 구성비율을 제시하면,

\[
\alpha^* (\text{미국 예시}) = \frac{\mu}{\lambda \cdot \sigma^2} = \frac{12.04\%}{4 \cdot (20.55\%)^2} \approx 0.7128(\text{약 } 71.28\% \text{ 수준})
\]

(산출 정보)

* 1926년 ~ 2002년 미국 단기국채(1달 T-Bill) 평균 투자수익률 = 3.82\%
* 1926년 ~ 2002년 미국 대형 보통주 평균 투자수익률 = 12.04\%
* 위험프리미엄(\(\mu\)) = 8.22\% \& 위험프리미엄의 표준편차(\(\sigma\)) = 20.81\%
* 위험회피계수: \(\lambda = 4.0\) (일반적으로 2.0-4.0 수준이지만 보수적 관점)

일례로 제시된 미국의 경우와 비교하면 현행 우리의 퇴직연금 적립금의 자산배분 형태는 지극히 보수적 관점에서 연기금 운용 컨설팅이 이루어지고 있는 것으로 추정된다. 물론 이러한 추론은 우리 자본시장과 미국 자본시장의 투자성과가 다르고, 아울러 제도 도입단계에서 투자자들이 보편적으로 느끼는 불안 심리로 인한 소극적 금융행위(passive
financial behavior) 등으로 논거의 객관성을 견지하기가 힘든 것 또한 사실이다.

표 IV-4 퇴직연금 위험자산 구성비율 추계

<table>
<thead>
<tr>
<th>년월</th>
<th>위험자산 구성비율(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전체 (DB : DC + IRA 비중)</td>
</tr>
<tr>
<td></td>
<td>생보</td>
</tr>
<tr>
<td>0512</td>
<td>55.80% (39.0:61.0)</td>
</tr>
<tr>
<td>0601</td>
<td>31.80% (33.6:66.4)</td>
</tr>
<tr>
<td>0602</td>
<td>30.00% (27.7:72.3)</td>
</tr>
<tr>
<td>0603</td>
<td>32.87% (32.2:67.8)</td>
</tr>
<tr>
<td>0604</td>
<td>33.94% (35.7:64.3)</td>
</tr>
<tr>
<td>0605</td>
<td>31.46% (37.0:63.0)</td>
</tr>
<tr>
<td>0606</td>
<td>31.12% (37.1:62.9)</td>
</tr>
<tr>
<td>0607</td>
<td>22.99% (36.9:63.1)</td>
</tr>
<tr>
<td>0608</td>
<td>20.97% (47.2:52.8)</td>
</tr>
<tr>
<td>0609</td>
<td>15.55% (66.4:33.6)</td>
</tr>
<tr>
<td>0610</td>
<td>15.46% (66.7:33.3)</td>
</tr>
<tr>
<td>0611</td>
<td>20.18% (66.7:33.3)</td>
</tr>
</tbody>
</table>

평균 28.51% 14.92% 0.65% 28.94% 86.53%

주1: 금융감독원 퇴직연금 종합안내자료(2007.01.09)를 근거로 재수정.
주2: 원리금보장 자산은 무위험자산으로, 실적배당 및 기타 자산은 위험자산으로 분류하여 α값을 산출하였음. 즉, $α = \frac{\text{실적배당 + 기타 자산}}{\text{합계}}$.
V. 연기금 적립위험 최적관리전략

1. 개요

연기금 적립위험을 최소화하는 적립관리(funding management)가 이번 장의 주된 목적이다. 연구의 대상은 퇴직연금제도를 시행하는 임의의 사업장에 대하여 총체적 운용관리업무를 수행하는 해당 금융기관의 관점에서 수행한다.

따라서 제II장에서 다른 개별적립방식(individual funding method)을 적용하여 가입근로자 각각에 대해서 산정된 표준기여금, 표준부채, 퇴직급여 등의 개인별 항목들을 가입근로자 전체에 대하여 총체화한 계리적 회계 정보에 근거한 계리적 분석을 수행한다. 또한 해당 사업장의 연기금 평가 결과로 발생할 가능성이 높은(계리적) 잉여금 혹은 부족금을 각각하는 방법론으로 제II장에서 이미 설명한 이연상각방식(spread pension funding method)을 보조 적립방식으로 채용하고 있다.

다음으로, 장기적 적립위험을 최소화하는 전략을 수립하기 위해 도입되는 분석도구는 (뒤에서 상술할)극한 평균-분산 접근법(limiting mean-variance approach)이다. 이는 최적자산배분전략 수립을 위해 도입한 평균-분산 접근법과 논리적 일관성을 유지하지만, 적립의 기본원칙이 장기적 안정성에 더 많은 중요성을 두고 있다.

최종적으로, 여기에서 우리가 도출하고자 하는 최적관리전략은, 제I장<그림 I-2>에서 명시한 것처럼, 최적 평가 이율(i^*)을 구하고, 다음으로 이연상각방식의 최적상각율(k^*)을 규정함으로써 완성된 것이다. 물론 제IV장에서 이미 도출한 최적위험자산구성비(α^*)로 대표되는 최적자산배분전략은 (i^*, k^*)로 대표되는 적립위험 최적관리전략을 구축함에 충분히 반영될 것이다. 왜냐하면, <그림 I-2>에서 잘 알 수 있듯이, 이들 전략 구축은 상호 순차적으로 따른 피드백 차원에서 상호 관련성을 가지기 때문이다.
2. 표준부채 vs. 연기금 자산 성장모형

운용관리 업무를 수행한 금융기관의 위탁 사업장내의 모든 가입근로자 전체의 표준부채 및 연기금 자산 성장모형을 구축한다. 이해의 편의를 위해 여기에서 적용되는 가정을 요약하면,

- 제II장 모형화 가정 I은 표준부채 성장모형 구축에 적용된다. 그리고
- 제II장 모형화 가정 II는 연기금 자산 성장모형 구축에 적용된다.

가. 표준부채 성장모형

먼저, 주요 변수들에 대해 살펴보기로 한다.

해당사업자의 DB연금규약에서 규정하고 있는 퇴직급여산출공식에 의해 향후 발생할(혹은 이미 발생한) 가입근로자별 연금급여채무의 계리적 현가(actuarial present value)의 총합인 표준부채(AL(t))를 산정할 수 있다. 이는 특정 적립방식에 의해 합리적으로 제시되는 적립방식상의 연금부채(funding liabilities)이며, 대부분의 경우, 즉 적립율 목표가 100%인 경우, 연기금 적립 목표값으로 설정된다. 또한 특정 적립방식에 의해 산출되는 주요 변수로 표준기여금(NC(t))을 언급할 수 있다. 이는 단위 평가기간(통상적으로 1년)의 근로에 의해 발생할 것으로 기대되는 가입근로자별 퇴직연금채무 추가 발생분의 총합을 의미하며, 회계학적 관점에서 당기근무원가(current service cost)로 표현된다. 그리고 단위 평가기간 동안, 가입근로자의 퇴직사유에 의해 지출될 것으로 추정되는 계리적 퇴직급여 총액을 EB(t)라고 표현한다.

이들 주요 변수들은 모두 모형화 가정 I의 (A7) ‘항상적 연령분포’ 가정에 의해 모두 상수임을 알 수 있다.
즉, \(\forall t \in \{0, 1, 2, \ldots\} \)에 대하여,
연기금 적립위험 최적관리전략

\[AL(t) = AL, \ NC(t) = NC, \ EB(t) = EB \quad (V-1) \]

단위 평가기간이 경과함에 따라 위의 계리적 변수들 간의 상호 관련 성을 표준부채를 중심으로 일반 모형화 하면, 아래와 같은 제1차 재귀 식(first-order recursive equation)로 표현된다. 이는 표준부채의 성장 추세를 특징짓는 것으로 일종의 성장모형(growth model)이다. 즉,

\[AL(t+1) = (1 + i_v) \cdot [AL(t) + NC(t) - EB(t)] \quad (V-2) \]

위의 선형재귀식(V-2)에 대하여 식(V-1)을 적용하면, 현대 연금계리분야에서 최초로 균형성숙방정식(equation of equilibrium or maturity) 개념을 정의한 Trowbridge(1952) 모형으로 정리될 수 있다. 즉,

\[AL = (1 + i_v) \cdot [AL + NC - EB] \]

⇔ \[\frac{i_v}{1 + i_v} \cdot AL + NC = EB \quad (V-3) \]

상기 균형식은 \(i_v, NC, EB, AL \) 4변수 중에서 3변수가 확정되는 나머지는 관계식에 의해 결정되는 수리적 의미를 내포하고 있다. 궁극적으로는 DB 연금제도의 라이프 사이클(일반적으로 성장기, 성숙기, 쇠퇴기로 대별되는)관점에서 변수들 간에 상기 균형식이 성립하면 연금제도의 성숙기에 진입한 것으로 판단되는 주요 측도로 자주 활용된다.

이상의 논의를 종괄적으로 일반화(예정사업비 부분을 포함)하여 요약정리하면 아래의 그림으로 표현됨을 쉽게 확인할 수 있다.
나. 연기금 성장모형

표준부채 성장모형과 대표적 차별성은 모형화 가정 II의 가정(B4)에 의해 특정 지워진다. 즉, 표준부채 성장모형이 계리적으로 추정된 값(기 대값을 중심으로 예측된 확정된 값)에 의한 확정적 모형(deterministic model)인 반면, 연기금 성장모형은 예상 투자수익률이 확률변수\(36\)인 관계로 확률론적 모형(stochastic model)이라는 점을 인지할 필요성이 있다. 기타 모형에 수반되는 변수들에 대한 설명은 아래의 <그림 V-2>에서 부연한 바와 같다.

따라서 표준부채의 성장모형에서처럼 장기재정추계에 사용되는 연기금 자산의 성장모형은 가정(B4)에 의해 다음과 같은 제1차 확률적 재귀

\[i_{t+1} = r + \alpha \cdot \epsilon_{t+1} \sim iid \ N(r + \alpha \cdot \mu, \alpha^2 \sigma^2). \]
식(first-order stochastic recursive equation)으로 특정 지위진다. 즉,

\[F(t + 1) = (1 + r + \alpha \cdot \epsilon_{t+1}) \cdot [F(t) + C(t) - B(t)] \quad (V-4) \]

여기에서, \(F(t) \)는 상태변수(state variable)이고 마코브특성(Markov property)을 가짐을 알 수 있다. 왜냐하면, \(\epsilon_{t+1} \sim iid \ N(\mu, \sigma^2) \)이기 때문에 평가시점 \(t \)까지 경험된/알려진 정보집합(information set or \(\sigma \)-field up to time \(t \)) \(\mathcal{I}_t \)에 대하여 다음이 성립하기 때문이다. 즉,

\[P[F(t+1)|\mathcal{I}_t] = P[F(t+1)|F(t), C(t), \alpha_t] \]

추가적으로, 현행 실무적 관점에서 퇴직급여(\(B(t) \))에 대해 언급하고자 한다. 대부분의 선진국에서는 연기금 운용관리에서 퇴직급여지급액은 가입비율방식(contract-ratio method)에 의해 이관 가치(transfer value)를 산출하고 있다. 그러나 우리의 특수 환경을 반영하여 근로법 시행령 제9조(확정급여형퇴직연금의 적립금 수준) 및 노동부고시 제2005-29호 (2005.10.05)에서 법정최소적립비율을 60%로 설정하고 있음을 알 수 있다(노동부 고시에 의한 최근과거근무채무(IPSL)의 상각스케줄 <표V-1> 참조). 이러한 관계로 퇴직급여지급액은 적립비율방식(funded-ratio method)에 의해 이관 가치를 산출하도록 되어 있다. 따라서 현행 실무적 관점을 반영한다면, 실제로 지급되는 퇴직급여액은 다음과 같이 산출되어야 할 것이다. 즉,

\[B(t) = EB(t) \cdot \frac{F(t)}{AL(t)} \]
<표 V-1> 현행 IPSL 법정 최소상각 연도별 스케줄

<table>
<thead>
<tr>
<th>IPSL 상각액</th>
<th>1년 미만</th>
<th>1년 이상 ~ 3년 미만</th>
<th>3년 이상 ~ 6년 미만</th>
<th>6년 이상 ~ 10년 미만</th>
<th>10년 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC(1차년)</td>
<td>IPSL × 60/100</td>
<td>IPSL × 30/100</td>
<td>IPSL × 20/100</td>
<td>IPSL × 15/100</td>
<td>IPSL × 12/100</td>
</tr>
<tr>
<td>AC(2차년)</td>
<td>0</td>
<td>IPSL × 30/100</td>
<td>IPSL × 20/100</td>
<td>IPSL × 15/100</td>
<td>IPSL × 12/100</td>
</tr>
<tr>
<td>AC(3차년)</td>
<td>0</td>
<td>0</td>
<td>IPSL × 20/100</td>
<td>IPSL × 15/100</td>
<td>IPSL × 12/100</td>
</tr>
<tr>
<td>AC(4차년)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IPSL × 15/100</td>
<td>IPSL × 12/100</td>
</tr>
<tr>
<td>AC(5차년)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>IPSL × 12/100</td>
</tr>
</tbody>
</table>

주1: 근퇴법 시행령 제9조의 법정최소적립비율 60%를 적립목표로 하여 IPSL 상각 계획 규정함(정액상각법(최대 5년, 이자무시)을 적용함).
주2: IPSL를 분리하여 상각한다는 관점에서 미국식 접근법(30년간 원리 균등 상각)과 매우 유사함.

본 연구에서는 이러한 실무적 지침을 배제하기 위하여, 가정(A1) 및 (A6)에서 정상퇴직급여만을 설정하고 지급액은 근퇴법상의 최소리설상퇴 직일시급만을 지급한다고 설정하고 있다. 아울러, 항상적 연령 분포 구조 가정(A7)을 추가로 적용하면,

\[B(t) = EB(t) = B \quad (V-5) \]

결론적으로, 모형화 가정 I, II 및 상기 식(V-5)을 적용하면 표준부채 및 연기금 자산 성장모형은 다음과 같이 각각 간단히 재수정된다.

\[AL = (1 + i_v) \cdot [AL + NC - B] \quad (V-6) \]
\[F(t + 1) = (1 + r + \alpha \cdot \epsilon_{t+1}) \cdot [F(t) + C(t) - B] \]

이하의 논의 과정에서 우리가 사용할 모형은 모형 (V-6)으로 한정한
다. 다음 절에서는 이연상각방식의 모형을 도입하고, 이연상각방식에서 관리대상 변수(controlled variable)로 설정하고 있는 손익 통제·비대칭 위험 그리고 이러한 비대칭위험에 의해 추가적(연쇄적)으로 발생하는 적립관리 비대칭 위험 등의 측도에 대해 구체적으로 다룬다.

<그림 V-2> 연기금 자산의 확률론적 성장모형

\[
\begin{align*}
\{I(t)\} & \quad \text{현금유입} \\
\{C(t)\} & \quad \text{현금유출} \\
\{F(t+1); F(0)} & \quad \text{Pension Fund} \\
\{B(t)\} & \quad \text{현금유출} \\
\{E(t)\} & \quad \text{현금유출}
\end{align*}
\]

\[
\begin{align*}
I(t) & \equiv \text{단위기간 } (t, t+1) \text{에서의 실제 예상투자수익} \\
& = (1 + i_{t+1}) \cdot [F(t) + C(t) - B(t) - E(t)] \\
C(t) & \equiv \text{단위기간 } (t, t+1) \text{에서의 총 납입기여액} \\
& \quad \text{(계리사가 산출한 합리적 필요기여액을 의미함)} \\
B(t) & \equiv \text{단위기간 } (t, t+1) \text{에서의 실제로 지급된 퇴직급여액} \\
E(t) & \equiv \text{단위기간 } (t, t+1) \text{에서의 실제 사업비} \\
& \quad \text{(예: 법률, 관리, 재무, 계리비용 등 +보증보험료 비용 등)} \\
F(t) & \equiv \text{단위기간 } (t, t+1) \text{초의 공정가액(fair value of pension asset)}
\end{align*}
\]

주1: 모든 현금흐름(실현된 실제 평가액)은 단위평가기간 초에 발생함을 전체로 함.
주2: 일반적으로, 실제사업비는 사용자가 전적으로 부담하므로 연금계리학에서 모형화할 경우 E(t)는 논의에서 배제됨. 따라서 EE(t) = E(t)임을 알 수 있다.

3. 이연상각 모형 및 손익위험 측정 모형

이연상각방식(spread pension funding method)에서 제시하고 있는 이연상각 모형에 대해 살펴보고, 모형의 우수성에 대해 간단히 검토한 다. 다음으로 손익 통제위험 측정 모형에 대해 간략히 다룬다.
가. 이연상각방식의 범용성/효율성

적립관리(funding management)에서 공극적인, 유일한 관리변수는 \(C(t) \)로 설정되며 일반적이다. 위 <그림 V-2>에서 간략히 설명한 것처럼 실제로 연기금 자산에 납입할 기여금을 의미하며, 연기금 적립 스케줄 \(\{ C(t) : t = 0, 1, 2, \ldots \} \)은 주적립방식에 의해 산정된 \(NC(t) \)와 보조적립방식으로 언급되는 이연상각방식에 의해 \(AC(t) \)가 결정된다(아래의 <그림 V-3> 참조). 요약하면,

\[
C(t) = NC(t) + AC(t)
\]

구체적으로, \(AC(t) \)는 연금재정 평가결과로 나타나는 잉여금 혹은 부족금을 일정기간에 걸쳐 상각하는 조정 기여금(adjusting contribution)의 성격을 갖는다. 일반 수리모형은 다음과 같이 표현된다.

\[
C(t) = NC(t) + AC(t)
= NC(t) + k \cdot [AL(t) - F(t)], \quad k = 1 / \ddot{a}_m
\]

\[
= NC(t) + k \cdot UL(t), \quad k = 1 / \ddot{a}_m
\]

\[(V-7) \]

여기에서, \(UL(t) = AL(t) - F(t) \)으로 정의되며 (계리적으로 산출된) 미적립채무(actuarial unfunded liability)로 의미한다. 다음 절에서 좀 더 구체적으로 살펴보기에 앞서 간략히 설명하면, “\(UL(t) > 0 \)”는 평가년도(t)에 저리적 부족금, “\(UL(t) < 0 \)”는 저리적 잉여금이 발생했음을 각각 의미한다. 한편, \(n \in \{ \text{자연수} \} \)은 산출된 부족금/잉여금을 향후 일정기간에 걸쳐 매 평가년도에 정규적으로 균등 상각하는 상각기간(amortization period)을 나타낸다. 특히, \(k = 1 / \ddot{a}_m \)를 이연상각모수(spread parameter)라고 한다.
그리므로 상기 식(V-7) 및 <그림 V-3>에서 명시적으로 제시하고 있는 것처럼, 적립관리변수 \(C(t) \)을 효율적으로 관리한다는 것은 \(AC(t) \)를 최적적으로 결정한다는 의미이다. 왜냐하면, \(NC(t) \)는 주적립방식에 의해 기계적으로 산출되는 값으로 우리가 관리의 효율성을 논할 수 없는 변수이기 때문이다. 더 나아가, \(AC(t) \)는 이연상각모수 \(k \)에 의해 지배되고 있음을 알 수 있다.

최적 적립관리 전략을 수립하고자 하는 본 연구의 주요 목적은 이연상각모수 \(k \)의 값을 최적으로 결정하는 문제로 귀결된다. 이러한 결론은 상기 식(V-7)을 다음과 같이 변형하여 표현하면, 더욱 명확해질 수 있다. 또한 상기 식 (V-7)에서 상각모수가 이산변수로 정의되고 있는데 우리는 최적화 전략 관점에서 0과 1사이의 값을 갖는 연속변수로 그 범위를 확대하며, 이는 상각모수의 도입 개념의 일반성을 해하지 않는다. 아울러 모형화 가정 I, II를 적용하면, 연금 부채 및 자산의 성장모형 (V-6)과 더불어 우리가 채택하는 이연상각방식의 모형은 간단히 다음과 같이 정의된다.
여기에서, \(k \)를 최적으로 관리하는 것은 연금 자산과 부채의 관리 오차에 관련된 변수 \(UL(t) \) 그리고 기여액 관리 오차와 관련된 변수 \(AC(t) \)을 동시에 효율적으로 관리하는 결과를 가져온다. 이와 같은 측면을 강조하여 \(k \)를 적립관리의 비효율성을 상정적으로 나타낸다고 하여 이를 벌칙이자율(penalty interest rate)이라고도 한다(Booth et al.(1999) 참조).

마지막으로 이연상각방식의 범용성에 대해 밝혀진 대표적 연구결과들을 연급하고 마무리하고자 한다.

둘째, 유럽국가들이 대차대조표의 결과(즉, <그림 V-3>의 계리적 부족금/잉여금)에 근거한 이연상각방식을 채택하고 있지만, 미국 및 캐나다 등 북미는(당기)의 손익계산서 결과(즉, <그림 V-3>의 계리적 손익)를 합리적으로 상각하는데 초점을 두고 개발된 손익상각방법(Amortization of Losses Method)을 사용하고 있다37). 이 두 상각방식에 대한 비교 우위에 대한 논쟁이 여러 학자들에 의해 수행되었는데, 이들 중 대표적인 두 주요 연구 결과를 그대로 옮겨보면,

\[C(t) - NC = AC(t) = k \cdot UL(t), \quad 0 \leq k \leq 1 \]
(V-8)

\(^a\) Owadally & Haberman(2004)의 연구 결과:

“Ignoring country-specific regulationary requirements, we conclude that, for the most stable funding levels and contributions gains and losses should be paid off by being spread than amortised.”

37) 손익상각법에 대한 계리적 모형 및 부언 설명은 성주호·김진억(1998) 참조.
文昌(1995)의 연구 결과:
“... the Spread Method is certainly more efficient than the Amortization of Losses Method: that is, for any value of m in combination with the Amortization of Losses Method there is a (different) value m for which the variance of both the fund size and the contribution rate can be reduced by switching to the Spread Method.”

위의 연구들은 공통적으로 필요기여액의 변동성 위험 ($\sum_{i=1}^{n} \sigma$)과 연기금 자산의 변동성 위험 ($\sum_{i=1}^{n} \sigma$) 모두를 최소화 관점에서 시뮬레이션 방법에 의해 비교 우위를 측정하였다. 예를 들어 설명하면, 아래의 <그림 V-4>와 같이 수치적 결과를 도식화함으로써 이연상각방식의 효율성을 강조하고 있다.

<그림 V-4> 이연상각방식 vs. 손익상각방식 효율성 비교 예

결론적으로, 본 연구에서 이연상각방식을 채택하고 있는 근본적 이유가 위와 같은 학문적 연구 결과에 근거하고 있을음을 주지할 필요성이 있다. 더욱이, 통제이론(control theory)관점에서 가장 효율적인 통제 시스템으로 평가받고 있는 피드백 시스템을 이연상각방식이 구현하고 있음
을 알 수 있다. 부언 설명하면, 상기 식(V-8)은 평가결과로 산출되는
\{UL(t + 1): t = 0, 1, 2, \ldots\}을 정규적으로 그리고 사후적으로 조정하는 피드백 메커니즘 특성을 나타내고 있기 때문이다.

나. 손익위험 측정 모형
계량 연금학 분야(pension science)에서 다루는 두 가지 측면에서 살펴보기로 한다. 그 중 하나는 회계 결산 관점이고 나머지는 (순수) 연금계리 관점이다. 우선 회계 결산 관점에서 간략히 살펴보기로 하자.

1) 회계 결산 관점
보편적으로 연금 회계 결산은 회계연도(즉, 단위평가기간) 말(末)에 모든 거래가 이루어지는 것으로 가정하여 결산을 수행하는데(all transactions are assumed to be to occur at the year end), 이는 이자 계산의 편의를 제고하고 아울러 발생주의 원칙(accrual basis)에 부합하기 때문인 것으로 판단된다. 기본적 손익 통제위험을 측정하는 메커니즘(부채법과 자산법으로 대별됨)을 알아본다. 먼저, 부채법(liability approach)은 <표 III-1>에서 설명한 PBO 관점에서 살펴보기로 한다. 주지하는 바와 같이 PBO는 PUM 방식에 의해 계리적으로 산출되는 결과이며, 회계사는 이를 기반으로 결산을 수행하게 됨을 인지할 필요성이 있다. 그러면, 적용되는 결산시점을 ‘06년 말 그리고 1년을 단위평가기간으로 설정하여 주요 결산 과정을 살펴보면,
연기금 적립위험 최적관리전략

[㉠: '05년 말 결산시점의 계리적 평가액, 즉 '05년 기말 PBO]
+ [㉡: '06년 기시시점에서 계리적 가정 변경, 급여설계 변경 사항 등
을 기존 근로가입자들에게 적용함으로써 추가로 발생하는 계리적 과거근무채무(Post-PSL) (≧ 0)]

\[
(㉠ + ㉡) = '06년 기시 PBO
\]

+ [㉢: 급여공식에 의해 '06년 평가기간 발생한 연급채무 증가액, 당기
근무원가(current service cost)]
+ [㉣: '06년 적용평가이율에 의한 PBO 증식 이자(interest cost on
liability). 즉, 증식이자 = ('06년 기시 PBO)×('06년 적용평가이율)]
- [㉤: '06년 평가기간에 실제로 지급된 퇴직급여 총합]
- [㉥: '06년 말 결산시점의 계리적 평가액, 즉 '06년 기말 PBO]

\[
(㉡ + ㉢ + ㉣ - ㉢ - ㉣ - ㉢) = '06년도 계리적 부채 손익(actuarial gain/loss on obligation)
\]

상기 '06년 평가기간의 결산 결과(㉢)에 대한 최종적 해석은 “+”이면
계리적 당기 익(益)이 발생한 것이고 “-”이면 계리적 당기 손(損)이 발
생하였음을 의미한다.

다음으로, 위의 부채법에서처럼 동일한 회계연도를 적용한 자산법
(asset approach)에 대해 살펴보자. 여기에서 주의할 점은 부채에 대하여
여 평가이율(환인율)을 적용하는 것처럼 자산에 대해서도 예정투자수익
률을 가정한다는 점이다. 주요 결산 과정을 살펴보면,
{ⓐ: '06년 기시시점에 평가한 연기금 자산의 공정가액(시가)}
+ {ⓑ: '06년 기대투자수익(expected return on pension assets)}
+ {ⓒ: '06년 평가기간의 실제 납입 기여액}
− {ⓓ: '06년 평가기간에 실제로 지급된 퇴직급여 총합(부채법 ⓜ)}
− {ⓔ: '06년 말 결산시점에 평가한 연기금 자산의 공정가액(시가)}

{ⓓ: '06년도 계리적 자산 손익(actuarial gain/loss on pension assets)}
주지하는 바와 같이 부채법의 해석과는 반대 방향으로 표현된다. 즉, 상기 결산 결과(-disabled)의 수치가 “+”이면 계리적 당기 손(損)이 발생한 것이고, “−”이면 계리적 당기 이익(益)이 발생한 것이다.

결론적으로, '06년도 계리적 당기 총 손익은 “--disabled”로 정의된다. 물론 총 손익이 “+”이면 계리적 당기 이익(益), “−”이면 계리적 당기 손(損)이 발생하였음을 각각 의미한다.

2) 연금 계리 관점

현행 보험사의 이원별 손익분석법(contribution method of profit distribution)과 유사함을 아래에서 기술할 내용을 통하여 쉽게 확인할 수 있을 것이다. 우선 본 연구에서 이연상각법을 채용하여, 계리 관점에서 운용관리상에서 발생한 손익 통제위험을 최적으로 관리한다는 기본 목적은 B/S관점에서 접근한다는 것이다. 이미 식(V-7)에서 정의된 미적립채무(UL(t) = AL(t) - F(t))를 주된 관리의 대상으로 설정하고 있음을 의미한다. 이와 같은 측면에서 우리는 다음과 같이 표현한 현학자 Wilkie(1986)의 미적립채무에 대한 인식을 추가로 고려할 필요성이 있다. 즉, “Surplus has to be measured to some funding target.”

따라서 퇴직연금제도 운용관리 업무상 발생할 수 있는 미적립채무는 Wilkie(1986)의 개념을 아래와 같이 수리 모형화하면, 크게 3가지 유형
으로 분류될 수 있을 것이다. 즉,

\[UL_W(t + 1) \equiv TL(t + 1) - F(t + 1) \quad (V-9) \]

위식에서, \(UL_W(t + 1) \)은 Wilkie(1986) 개념에 기초한 미적립채무임을 강조하기 위해 밑첨자를 부여한 것이며, 적립목표(funding target)를 \(TL(t + 1) \)로 표현하였다.

첫째, 법정 미적립채무(statutory unfunded liabilities)를 언급할 수 있을 것이다. 이는 운용관리업무를 관장하는 관계당국이 설정하는 적립목표를 기준으로 판단되는 측도이다. 예를 들어, 현행 근무법시행령 제9조를 반영한다면, \(TL(t + 1) = 60\% \times AL(t + 1) \). 둘째, 운용관리 업무를 수행하는 연금전문가가 항시적 지급능력(continued solvency)을 확보한다는 차원에서 적립목표를 설정하는 경우를 생각해 볼 수 있다. 이를 편의상 지급능력 미적립채무(solvent unfunded liabilities)라고 하자. 예를 들어, Thornton & Wilson(1992)이 청산, M&A 등 기업의 존속이 어려운 상황에서도 항시적 지급능력을 확보하기 위해서 다음과 같이 제안한 적립목표가 이에 해당할 수 있을 것이다. 즉,

\[TL(t + 1) \geq 120\% \times AL(t + 1) \]

마지막으로, 우리가 보편적으로 인식하고 있는 미적립채무는 엄밀한 의미에서 계리적 적립방식에 의해 발생하는 일정의 적립 미적립채무(funding unfunded liabilities)로서, \(TL(t + 1) = 100\% \times AL(t + 1) \)을 의미한다.

이와 같은 측면에서 \(UL_W(t + 1) \)을 다름이 논의 일반성을 제고할 수 있을 것이다. 그러나 이는 다소 기술적 문제이므로, 이미 기술한 내용과의 일관성 차원에서 식(V-7)에서 정의된 \(UL(t + 1) \), 즉 적립 미적립채무 개념을 적용하기로 한다.
다음으로, 손익 분석 절차에 대해 살펴본다. 식(V-2) 및 (V-4)에 의해 정의되는 미적립채무는 아래와 같다. 즉,

\[
UL(t + 1) \\
\equiv AL(t + 1) - F(t + 1) \\
= (1 + i_v) \times \{AL(t) + NC(t) - EB(t)\} \\
\quad - (1 + i_{t+1}) \times \{F(t) + C(t) - B(t)\} \\
= (1 + i_v) \times UL(t) + (1 + i_v) \times \{[NC(t) - C(t)] + [B(t) - EB(t)]\} \\
\quad + [i_v - i_{t+1}] \times [F(t) + C(t) - B(t)] \tag{V-10}
\]

위 식에서 우리는 회계 결산 관점에서 종합적으로 살펴본 것처럼, 당기의 손익 변동성은 평가이율 \(i_v\), \(NC(t) - C(t), B(t) - EB(t), i_v - i_{t+1}\) 등에 의해 결정됨을 확인할 수 있다. 더 나아가 상기 식(V-10)에서 계리적 가정들이 당해연도에 100% 모두 실현된다면, 아래와 같이 재구성됨을 알 수 있다. 즉,

\[
UL^*(t + 1) = (1 + i_v) \times UL(t) + (1 + i_v) \times [NC(t) - C(t)] \tag{V-11}
\]

따라서 이원분석 절차와 마찬가지로, “(V-10) \(-\) (V-11)” 을 취하면 당해 연도에 인식하여야 할 계리적 손익이 정의된다.

\[
L(t + 1) \equiv UL(t + 1) - UL^*(t + 1) \\
= (1 + i_v) \times [B(t) - EB(t)] \\
\quad + [i_v - i_{t+1}] \times [F(t) + C(t) - B(t)] \tag{V-12}
\]

위 식의 의미를 살펴보면, 첫째 항은 급여손익(benefit gain/loss), 둘
제 항은 투자손익(investment gain/loss)을 나타내고 있다. 물론 \(L(t+1) \)의 값이 “+”이면 당기 계리적 손(損)이 발생한 것이고, “-”이 면 계리적 당기 익(益)이 발생한 것이다.

특히, McGill et al. (1996)에서 \(L(t+1) \)을 경험 계리적 손익(experience gains and losses)이라고 부르고, 미래의 불확실성에 기인한 필연적 결과로 설명하고 있다.

더 나아가, 상기 식(V-12)에 모형화 가정 (A1), (A7) 및 (B1)을 적용하면 \(B(t) = EB(t) = B^{38} \)이므로,

\[
L(t+1) = [i_i - i_{t+1}] \times [F(t) + C(t) - B(t)]
\]

위 식은 본 연구에서 예상투자수익률의 변동성에 의한 손익 통제위험을 다룬다는 연구의 기본 설정과 일치함을 보여주고 있다. 이상의 논의 과정에서 회계적 관점의 당기 손익은 사후 정산적 수치(balancing figure)를 도출하는 반면, 계리적 관점의 당기 손익은 이원별 손익의 합으로 제시된다. 그러므로 위험관리 측면에서 계리적 접근이 상대적으로 더 효율적이다.

마지막으로, 계리적 당기 손익 그리고 과거 계리적 손익들 중 미상각된 잔여분의 총합이 당기의 미적립채무인 점에 연구의 초점을 둔다. 연금 제정의 당기 평가결과는 아래의 그림 V-5)에서 제시된 것처럼 할 축적으로 산출하여 운용관리 업무에 일반적으로 활용되고 있다. 따라서 이미 강조한 바와 같이, 본 연구에서 운용관리 업무의 주된 관리 대상은 궁극적으로 미적립채무임을 인지할 필요성이 있다.

38) 식(V-5) 참조.
<그림 V-5> 평가년도 말 연금 재정 요약표

<table>
<thead>
<tr>
<th>표준기여액 계리현가</th>
<th>예상 장래급부 계리현가</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApiModelProperty</td>
<td>ApiModelProperty</td>
</tr>
<tr>
<td>APV[NC(t+1)]</td>
<td>APV[EFB(t+1)]</td>
</tr>
<tr>
<td>녹직연금채무 (책임준비금)</td>
<td>기발생 채무</td>
</tr>
<tr>
<td>UL(t+1)</td>
<td>Past Service Liability</td>
</tr>
<tr>
<td>연금자산</td>
<td>장래 발생 채무</td>
</tr>
<tr>
<td>F(t+1)</td>
<td>Future Service Liability</td>
</tr>
</tbody>
</table>

4. 손익위험의 평균-분산 분석

가. 개요

모형화 가정 II의 가정 (B2) 및 (B4)에 의해 우리가 다루는 식 (V-6), (V-8) 및 (V-13) 모두 확률과정(stochastic process)에 의해 지배됨을 알 수 있다. 왜냐하면, 예상투자수익률 \(\iota_{t+1}: t = 0, 1, 2, \cdots \)이 랜덤워크 확률과정이므로, \(\{L(t+1): t = 0, 1, 2, \cdots\} \), \(\{F(t+1): t = 0, 1, 2, \cdots\} \), \(\{UL(t+1): t = 0, 1, 2, \cdots\} \) 그리고 \(\{AC(t): t = 0, 1, 2, \cdots\} \) 모두는 통계적 시계열이기 때문이다.

특히, 연기금 운용관리 업무상 발생하는 손익 통제위험을 <그림 I-1>을 비롯하여 서론 부분에서 이미 언급한 지급능력위험(solvency risk) 및 기여위험(contribution risk)으로 대별하고, 이들을 수리 모형화 할 것이다. 이들은 \(\{UL(t+1): t = 0, 1, 2, \cdots\} \) 및 \(\{AC(t): t = 0, 1, 2, \cdots\} \) 변동성으로 정의될 것이며, 우리는 이들을 동시에 최소화하는 적립전략을 수립하게 될 것이다. 물론 최적 자산배분전략에서 도입된 평균-분산 접근법을 적용할 것이다. 더 나아가, 연기금 재정의 장기적 안전성을 확보하는 운용관리 업무의 최대 현안을 구현하기 위해 우리는 극한 평균-분산 접근법(limiting mean-variance approach)을 사용할 것이다.
나. 지급능력위험의 평균-분산 재귀식

주지하는 바와 같이 현재까지 위험에 대한 법무적 정의는 존재하지 않는다. 그러나 일반적으로 변동성/불안정성 (volatility)으로 언급되며, 위험의 측정은 분산(표준편차) 등으로 측정된다. DB 연금 운용관리상에서 지급능력과 명시적으로 관련된 변수로서 \(\{UL(t) : t = 0, 1, 2, \ldots \} \)을 설정하고, 이들 시계열의 변동성을 지급능력위험이라고 정의한다. 평균-분산 접근법에 의해 지급능력위험을 최소화하는 손익 통제위험 관리전략을 수립한다. 따라서, \(\{(E[UL(t+1)], Var[UL(t+1)]) : t = 0, 1, 2, \ldots \} \)에 대해 살펴보기로 한다. 상기 식(V-6), (V-8) 및 (V-13)을 활용하면, 다음과 같은 통계적 선형 재귀식을 도출할 수 있다. 여기서 우리가 유의하여야 할 점은 이익 제IV장에서 식(IV-10)에 의해 규정된 최적 자산배분전략에 의해 \(\alpha \)의 최적화를 구현하였다는 것이다. 즉, \(\alpha = \alpha^* \)이다.

\[
UL(t + 1) = AL(t + 1) - F(t + 1)
= (1 + i_v) \cdot [UL(t) - AC(t)]
\quad + (i_v - r - \alpha^* \cdot \epsilon_{t+1}) \cdot [F(t) + C(t) - B]
\quad = (1 + i_v) \cdot (1 - k) \cdot UL(t) + L(t+1)
\quad = (1 + r + \alpha^* \cdot \epsilon_{t+1}) \cdot (1 - k) \cdot UL(t)
\quad + \frac{i_v + r - \alpha^* \cdot \epsilon_{t+1}}{1 + i_v} \cdot AL
\quad \text{ (V-14)}
\]

위 식에서 상태변수(state variable) \(UL(t) \)는, 앞에서 설명한 \(F(t) \)에서처럼, 마코브 특성이 있음을 쉽게 확인할 수 있다. 왜냐하면, 평가시점 \(t \)까지의 정보집합, \(\psi(t) = \{UL(0), UL(1), \ldots , UL(t)\} \), 에 대하여 다음과이
성립하기 때문이다. 즉,

$$P[UL(t+1) \mid \psi_t] = P[UL(t+1) \mid UL(t)]$$

우선, 조건부 기대값 성질(Mood(1963) 참조)을 이용하여 위식(V-14)에 기대값을 취하면 기대값에 대한 선형재귀방정식이 도출됨을 알 수 있다. 즉,

$$E[UL(t+1)] = E[E[UL(t+1) \mid \psi(t)]]$$

$$= (1 + r + \alpha^* \cdot \mu) \cdot (1 - k) \cdot E[UL(t)]$$

$$+ \frac{i_v - r - \alpha^* \cdot \mu}{1 + i_v} \cdot AL$$

$$= \phi(\alpha^*, k) \cdot E[UL(t)] + R(\alpha^*, i_v) \quad (V-15)$$

여기에서,

$$\phi(\alpha^*, k) = (1 + r + \alpha^* \cdot \mu) \cdot (1 - k) \quad \text{그리고}$$

$$R(\alpha^*, i_v) = \frac{i_v - r - \alpha^* \cdot \mu}{1 + i_v} \cdot AL.$$

한편, 제도 시행단계에서 이미 확정적으로 결정되는 $UL(0)$에 대하여 위식(V-15)의 해를 구하면,

$$E[UL(t)] = \phi(\alpha^*, k)^t \cdot UL(0) + \frac{R(\alpha^*, i_v) \cdot [1 - \phi(\alpha^*, k)^t]}{1 - \phi(\alpha^*, k)}.$$

운용관리 업무 측면에서 위의 해가 유효한 의미를 갖기 위해서는, 궁극적으로 유한한 값으로 수렴하여야 할 것이다. 이를 보증하기 위해서
는, 아래와 같은 추가적인 조건이 필요하게 된다. 즉,

\[
0 \leq \phi(\alpha^*, k) < 1 \iff 1 - \frac{1}{1 + r + \alpha^* \cdot \mu} < k \leq 1 \quad (V-16)
\]

편의상 이하에서는 조건(V-16)을 만족하는 \(k \)를 \(k^\circ \)라고 표기한다.

지급능력위험을 측정하기 위해 위와 유사한 방법으로 상기 식(V-14)에 조건부 분산 성질(Mood(1963) 참조)을 적용하면,

\[
\text{Var}[UL(t+1)] = E\{\text{Var}[UL(t+1) \mid \psi(t)]\} + \text{Var}\{E[UL(t+1) \mid \psi(t)]\}.
\]

먼저, 첫째 항의 기대값을 구하면

\[
E\{\text{Var}[UL(t+1) \mid \psi(t)]\} = E\left\{ [(1 - k^\circ) \cdot UL(t) \cdot \alpha^* \cdot \sigma]^2 + \left[\frac{AL}{1 + i_v \cdot \alpha^* \cdot \sigma} \right]^2 \right\}
\]

\[
- E\left\{ 2(1 - k^\circ) \cdot UL(t) \cdot \frac{AL}{1 + i_v} \cdot (\alpha^* \cdot \sigma)^2 \right\}
\]

\[
= (\alpha^* \cdot \sigma)^2 \cdot \{ (1 - k^\circ)^2 \cdot \text{Var}[UL(t)] \}
\]

\[
+ (\alpha^* \cdot \sigma)^2 \cdot \left\{ [(1 - k^\circ) \cdot E[UL(t)] - \frac{AL}{1 + i_v}]^2 \right\}
\]

\[
= \tau(\alpha^*, k^\circ)^2 \cdot \text{Var}[UL(t)] + \{ \tau(\alpha^*, k^\circ) \cdot E[UL(t)] - Q(\alpha^*, i_v) \}^2 \quad (V-17)
\]

여기에서,

\[
\tau(\alpha^*, k^\circ) = (\alpha^* \cdot \sigma) \cdot (1 - k^\circ) \quad \text{그리고}
\]
\[Q(\alpha^*, i_v) = \frac{\alpha^* \cdot \sigma \cdot AL}{1 + i_v} \].

다음으로, 둘째 항의 분산을 구하면

\[
\text{Var}\{E[UL(t + 1)|\psi(t)]\} = \text{Var}\{\phi(\alpha^*, k^\circ) \cdot UL(t) + R(\alpha^*, i_v)\} = \phi(\alpha^*, k^\circ)^2 \cdot \text{Var}\{UL(t)\}
\]

\[(V-18)\]

결론적으로, 상기 식(V-17)과 (V-18)에 의해, 본 연구에서 당기의 지급능력위험의 측도로 사용할 미적립채무의 분산은 다음과 같은 선형재귀식에 의해 특징 지워짐을 알 수 있다. 즉,

\[
\text{Var}\{UL(t + 1)\} = [\tau(\alpha^*, k^\circ)^2 + \phi(\alpha^*, k^\circ)^2] \cdot \text{Var}\{UL(t)\} + [\tau(\alpha^*, k^\circ) \cdot E[UL(t)] - Q(\alpha^*, i_v)]^2
\]

\[(V-19)\]

위 식(V-19)의 일반해를 수학적 귀납법(mathematical induction)을 적용하여 순차적으로 구하여 보면,

\[
\text{Var}\{UL(t + 1)\} = [\tau(\alpha^*, k^\circ)^2 + \phi(\alpha^*, k^\circ)^2]^t \cdot [\tau(\alpha^*, k^\circ) \cdot E[UL(0)|\alpha^*, k^\circ] - Q(\alpha^*, k^\circ)]^2
\]

\[+ [\tau(\alpha^*, k^\circ)^2 + \phi(\alpha^*, k^\circ)^2]^{t-1} \cdot [\tau(\alpha^*, k^\circ) \cdot E[UL(1)|\alpha^*, k^\circ] - Q(\alpha^*, k^\circ)]^2
\]

\[+ \ldots \]

따라서 위의 일반해가 수렴하지 않는다면 (not convergent), 운용관리 업무의 실제적 실효성을 찾을 수 없다. 그러므로 운용관리 업무 측면에서 유 효한 의미를 갖기 위해서는 장기적으로 수렴함을 보증할 수 있어야 한다. 이를 보증하는 아래의 추가 조건이 일반해의 수리적, 경제적 의미를 부여하게 될 것이다. 즉,
\[S(\alpha^*) = (\alpha^* \cdot \sigma)^2 + (1 + r + \alpha^* \cdot \mu)^2 \]
라고 두면

\[\tau(\alpha^*, k^\circ)^2 + \phi(\alpha^*, k^\circ)^2 < 1 \iff \frac{\sqrt{S(\alpha^*)} - 1}{\sqrt{S(\alpha^*)}} < k^\circ \leq 1 \quad (V-20) \]

표현의 간편성을 위하여, 이하 논의에서는 조건 (V-20)을 만족하는 \(k^\circ \) 를 \(k^\dagger \)라고 표기한다.

다. 기여위험의 평균-분산 재귀식

상기 식 (V-8)에 의하여, \(\{AC(t) : t = 0, 1, 2, \ldots \} \)는 앞 절에서 살펴본 통계적 시계열 \(\{UL(t) : t = 0, 1, 2, \ldots \} \)에 의해 평가기간별로 일대일로 정확하게 대응됨을 알 수 있다. 그러므로, 기여위험의 평균-분산 갯들 \(\{(E[AC(t+1)], Var[AC(t+1)]) : t = 0, 1, 2, \ldots \} \)은 미적립채무의 평균-분산 재귀식 (V15) 및 (V-18)에 의해 각각 순차적으로 결정됨을 알 수 있다. 즉,

\[
E[AC(t)] = k^\dagger \cdot E[UL(t)]
\]
\[
Var[AC(t)] = (k^\dagger)^2 \cdot Var[UL(t)]
\]

(V-21)
결론적으로, 지급능력위험 측도와 동일 선상에서, 본 연구에서 당기 기여위험의 측도로 위 식(V-21)의 분산을 사용한다.

다음 절에서는 지금까지의 논의의 결과로 도출된 UL 및 AC의 평균-분산 선형 재귀식을 활용하여, 어떻게 최적 평가이율을 결정할 것인지를 대해 고찰하도록 한다.

5. 최적 평가이율 전략

이미 살펴본 바와 같이, $\{(E[AC(t+1)], Var[AC(t+1)]) : t = 0, 1, 2, \ldots\}$의 분석이 $\{(E[UL(t+1)], Var[UL(t+1)]) : t = 0, 1, 2, \ldots\}$에 의해 특정 지위진다. 이번 절에서는 이들의 특성을 반영하여, 모형화 가정 1의 (A4)에서 설정한 평가이율(i_ν) 설정 전략에 대해 살펴보기로 한다.

지금까지의 논의 과정에서 그리고 제Ⅲ-5절의 수치에서 등을 통하여 우리는 평가이율의 중요성에 대해 깊이 인지하고 있다. 부인 설명하면, 평가이율이 얼마로 결정됨에 따라, 필요기여금 C의 목표값인 NC, 연기금 자산 F의 목표값인 AL 등이 변동하게 된다. 따라서 i_ν의 결정은 UL 및 AC값의 변화를 수반하게 되며, 결국 지급여력위험과 기여위험에 영향을 미치게 됨을 쉽게 알 수 있다. 또한 i_ν는 투자전략에 의해 영향을 받는 변수이며, 장기적 관점에서 필요기여금 C 및 연기금 자산 F의 목표값과의 궁극적·장기적 차이가 평균 측면에서 최소화되도록 설정될 필요성이 있다.

이러한 고려 사항들을 참조하여 우리는 다음과 같은 평가이율 설정 전략을 실험하려고 한다. 즉, $\theta \in (0, 1)$에 대하여

\[
\min_{i_\nu} \left\{ \theta \cdot E[AC(\infty)|\alpha^*, k^1] + (1-\theta) \cdot E[UL(\infty)|\alpha^*, k^1] \right\} \quad (V-22)
\]
여기에서,

\[
E[\Delta C(\infty) | \alpha^*, k^+] = \lim_{t \to \infty} E[(\Delta C(t) | \alpha^*, k^+)] = k^+ \cdot \frac{R(\alpha^*, i_v)}{1 - \phi(\alpha^*, k^+)}
\]

\[
E[UL(\infty) | \alpha^*, k^+] = \lim_{t \to \infty} E[(UL(t) | \alpha^*, k^+)] = \frac{R(\alpha^*, i_v)}{1 - \phi(\alpha^*, k^+)}
\]

그리고 \(\theta \)는 두 장기 균형값의 가중치이다. 이론적 측면에서 파레토최적(Pareto optimal)으로 결정됨이 바람직하다. 그러나, 노사간의 주요 관심사가 상호 상충(즉, 기여비용과 지급능력비용에 대한 상호 관심 우선순위의 차이) 하므로, 실무적 관점에서는 이를 합리적으로 조율하는 모수로 설정되어야 할 것이다. 이러한 합의점을 도출하는 역할 또한 운용관리 금융기관이 수행하여야 할 주요 업무 중 하나이다.

따라서 최적 평가이율은 다음과 같이 설정될 수 있다.

\[
i^*_v = E[i_{t+1} | \alpha^*] = r + \alpha^* \cdot \mu \quad (V-23)
\]

왜냐하면, 상기 식(V-22)에서 \(R(\alpha^*, i^*_v) = 0 \) 이기 때문이다.

결론적으로, 운용관리 업무에서 \(C(t) \) 및 \(F(t) \) 각각의 이상적 목표값에서 벗어나는 비대칭 통계적 시계열 \(\{AC(t) = C(t) - NC \} \) 및 \(\{UL(t) = AL - F(t)\} \)를 동시에 조율할 수 있는 주요 관리변수(controlling variables)중에서 평가이율(i_v), 위험자산 투자비중(\(\alpha \))의 최적화 전략을 다루었다. 다음 절에서는 마지막으로 이연상각모수(k^+)의 최적화에 대해 다룬다.
6. 최적 손익위험 상각 전략

앞에서 이미 설명한 바와 같이, 특히 제V-3-가절에서 상술한 것처럼, 이연상각방식은 적립 목표값에서 벗어나는 비대칭 통계적 시계열 \(AC(t) = C(t) - NC \) 및 \(UL(t) = AL - F(t) \)의 변동성(즉, 기여위험과 지급능력위험)을 동시에 효율적으로 조절하도록 설계된 보조적립방식이다. 아울러, 적립의 장기적 안정성(funding stability)을 고려하여 상각 전략을 수립하여야 함도 요구된다. 이러한 제반 요건을 충족하는 최적 \(k^\dagger \)을 구하기 위해, 우리는 먼저 적립성과지표(funding performance index)를 정의하여야 한다. 본 연구에서는 다음과 같은 지표를 설정한다. 즉, 임의의 \(\theta \in (0, 1) \)에 대하여,

\[
FPI(k^\dagger) = \theta \cdot Var[AC(\infty) | \alpha^*, i^*_v, k^\dagger] + (1 - \theta) \cdot Var[UL(\infty) | \alpha^*, i^*_v, k^\dagger]
\]

여기에서,

\[
Var[AC(\infty) | \alpha^*, i^*_v, k^\dagger] = \lim_{t \to \infty} Var[AC(t) | \alpha^*, i^*_v, k^\dagger]
\]

\[
= (k^\dagger)^2 \cdot \frac{Q(\alpha^*, i^*_v)^2}{1 - [\tau(\alpha^*, k^\dagger)^2 + \phi(\alpha^*, k^\dagger)^2]}
\]

\[
Var[UL(\infty) | \alpha^*, i^*_v, k^\dagger] = \lim_{t \to \infty} Var[(UL(t) | \alpha^*, i^*_v, k^\dagger]
\]

\[
= \frac{Q(\alpha^*, i^*_v)^2}{1 - [\tau(\alpha^*, k^\dagger)^2 + \phi(\alpha^*, k^\dagger)^2]}
\]

그리고

\(\theta \)는 상기 식(V-22)에서와 유사한 의미를 가지지만 추가적으로는 실무
적 관점에서 기업 재무상태, 산업 동향, 기업주의 선호도(기여 안정성 혹은 급여 안정성 등에 대한) 등 제반 내·외생 변수 등을 고려하여 해당 금융기관의 연금컨설턴트에 의해, 노사관계를 고려하여, 합리적으로 조율되어 결정되어야 할 것이다. (단, 노사관계의 이해관계를 일관성 있게 조율해야할 금융기관의 관점에서는 (최적평가비용설정과정에서 도출된) 식(V-23)에 적용된 θ는 최적 손익위험 관리 전략 수립과정에도 그대로 적용되어야 논리적 합리성을 견지할 것이다.)

결론적으로, 우리의 최적화 문제(optimal control problem)는 임의의 $\theta \in (0, 1)$에 대하여 목적함수 $FPI(k^\dagger)$는 다음과으로 설정된다. 즉,

$$
\min_{k^\dagger} \left[\theta \cdot \text{Var}(AC(\infty) | \alpha^*, i^*_v, k^\dagger) + (1 - \theta) \cdot \text{Var}(UL(\infty) | \alpha^*, i^*_v, k^\dagger) \right]
$$

$$
\Leftrightarrow \min_{k^\dagger} \left\{ \theta \cdot (k^\dagger)^2 + (1-\theta) \right\} \cdot \frac{Q(\alpha^*, i^*_v)^2}{1 - S(\alpha^*) \cdot (1-k^\dagger)^2} \right\}
$$

위에서 정의된 최적화 문제 (V-24)는 k^\dagger에 대한 목적함수 $FPI(k^\dagger)$의 정확한 형태를 파악하기 힘든 일종의 비선형계획법 문제(nonlinear programming problem)이다. 그러므로 최적해를 탐색하기 위해서 함수형태에 대한 검증이 선행되어야 한다. 따라서 k^\dagger에 대하여 미분하여 0으로 두면,

$$
\theta \cdot S(\alpha^*) \cdot (k^\dagger)^2 + [S(\alpha^*) - 2\theta \cdot S(\alpha^*) + \theta] \cdot k^\dagger - (1-\theta) \cdot S(\alpha^*) = 0
$$

근의 공식을 적용하면, 산출되는 두 개의 근 k_1^\dagger, k_2^\dagger (부호 동순)은
먼저, 두 근 (V-25)의 적합성을 검증하여 보면, \(k_2^\dagger \) 값은 제약식 (V-20)을 충족할 수 없다 (\(\because S(\alpha^*) > 1 \) 그리고 \(\theta \in (0, 1) \) 이므로 \(k_2^\dagger < 0 \)). 따라서 \(k_1^\dagger \)만이 적합 가능한 근이다.

다음으로, 두 개의 근이 존재하므로 목적함수 \(FPI(k^\dagger) \)는 3차 함수 혹은 4차 함수 형태로 추론되며, \(k_1^\dagger \)는 국부최대점, 국부최소점 혹은 변곡점(local maximum, local minimum or inflection point) 등의 임계점일 가능성이 있다.

이상에서 살펴본 것처럼 목적함수 \(FPI(k^\dagger) \)의 불명확성, 복잡성 등으로 인하여, 최적해는 아래와 같은 수치 해석적 알고리즘에 의존할 수밖에 없다는 결론에 도달한다. 우선, 제약식 (V-20)을 알고리즘상에 엄밀히 반영하여 관리영역의 최대하한(infimum)을

\[
k_0 = \lim_{\zeta \to 0^+} \frac{\sqrt{S(\alpha^*)} - 1}{\sqrt{S(\alpha^*)}} + \zeta \tag{V-26}
\]

결론적으로, 최종 알고리즘은 아래와 같이 구축될 수 있을 것이다.

(탐색 I) : \(\frac{\sqrt{S(\alpha^*)} - 1}{\sqrt{S(\alpha^*)}} < k_1^\dagger \leq 1 \) 이면,

\[
\Rightarrow \text{최적해 } k^\star = \min_{k_1^\dagger, 1, k_0} \{ FPI(k) \} \tag{V-26}
\]

(탐색 II) : \(\frac{\sqrt{S(\alpha^*)} - 1}{\sqrt{S(\alpha^*)}} < k_1^\dagger \leq 1 \)가 아니면,
연기금 적립위험 최적관리전략

115

다음 절에서는 위에서 설정된 최적해 탐색 절차에 따라 산출되는 수치 최적해를 예시하고 그 의미를 분석하고자 한다.

7. 수치 예시 및 시사점

지금까지 도출된 수리모형들에 대한 최적해 예시를 제시하고자 한다. 연금컨설파일 절차는 다음과 같다. 특정 퇴직연금 사업장의 운용관리 업무를 위탁받은 금융기관은 향후 자본시장에서의 예상투자수익률에 대한 기본 가이드라인(즉, 무위험 툈자수익률, 위험자산 툈자에 따른 예상 위험프리미엄의 평균 및 표준편차 등)을 설정한다. 또한, 해당 사업장의 노사 관계 정도(즉, 지급능력위험에 대한 기여위험의 가중치 등) 그리고 사용자의 위험회피정도에 대하여 다양한 시나리오를 제시한다.

위의 컨설판 과정을 통하여, 해당 금융기관이 제시하고자 하는 최적해 예시를 위한 기본 정보는 다음과 같다. 이들 가정에 의한 결과는 최적 손익위험 관리절차에 의해, 아래의 <그림 V-6, 7> 그리고 <표 V-2, 3, 4>에서 주어진 것처럼 순차적으로 예시한다. 그리고 산출된 결과에 대한 주요결과는 주) 형식을 취하여 그 시사하는 바를 강조한다.

【수치 예시를 위한 기본 가정】

- 무위험자산의 예상투자수익률
 : \(r = 3\% \)

- 위험자산 툈자에 따른 평균 위험프리미엄
 : \(\mu = 8\% \)
예상 위험프리미엄의 표준편차
\[\sigma = 30\% \]
투자자의 위험자산 투자에 따른 위험회피계수
\[\lambda = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 \]
지급능력위험에 대한 기여위험의 상대적 가중치
\[\theta = 0.1, 0.3, 0.5, 0.7, 0.9 \]

먼저, 상기 기본가정을 이용하여 식(IV-10)에 의해 규정되는 최적자산 배분전략의 수치 예시는 그림(V-6)과 같다. 이를 통해 위험자산에 대한 투자자 위험회피정도가 강하면 강할수록(즉, \(\lambda \to \infty\)), 최적 위험자산 투자 비율(\(\alpha^*\))은 ‘0’으로 수렴함을 알 수 있다. 아울러, 수렴 속도는 점차 낮아짐을 알 수 있다. 또한 재정적으로 안전성이 높은 연기금은 위험자산에 대한 투자비율이 상대적으로 높다는 것이 일반론이다(표 IV-2 참조). 이러한 측면에서 위험회피정도가 강하다는 것은 그만큼 연금재정의 불안정성이 혹은 해당 사업장의 재무구조의 비효율성 등이 높다고 판단할 수 있다.

<그림 V-6> 최적 위험자산 투자비율(\(\alpha^*\))
위험자산에 대한 최적 투자비율을 결정한 이후에, 의사 결정하여야 할 최적 평가이율 전략은 식(V-23)에 의해 규정된다. 이를 위한 수치 예시는 그림(V-7)과 같다.

이를 통해 위험회피정도가 강하면 강할수록(즉, $\lambda \to \infty$), 최적 평가이율(i^*_v)은 무위험투자수익률($r = 3\%$)로 수렴함을 알 수 있다. 또한 상기 <그림 V-6>과 유사한 추세를 나타내는 것은 식(V-23)에서 규정한 $i^*_v = r + \alpha^* \cdot \mu$라는 선형관계에 기인함을 알 수 있다.

<그림 V-7> 최적 평가이율(i^*_v)

다음으로, 노사 관계 측면에서 기여위험 및 지급능력위험에 대한 상대적 가중치(θ) 그리고 해당 사용자의 투자 위험회피 정도(λ) 등에 따른 최적상각 전략의 예시는 아래의 <표 V-2>와 같다. 즉, 상기 식 (V-26)에 의해 도출된 결과이다.

이를 통해 위험자산에 대한 투자위험회피정도가 강할수록 손익상각을
이 감소함을 알 수 있으며, 지급능력위험에 비하여 기여위험의 중요성
이 강조될수록 손익상각율이 감소함을 알 수 있다. 이는 결국 기여액의
변동성을 낮게 유지하는 전략으로 해석된다.

<표 V-2> 최적 손익상각율(k^*)

<table>
<thead>
<tr>
<th>k^*</th>
<th>$\theta = 10%$</th>
<th>$\theta = 30%$</th>
<th>$\theta = 50%$</th>
<th>$\theta = 70%$</th>
<th>$\theta = 90%$</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 1.0$</td>
<td>0.927231</td>
<td>0.800915</td>
<td>0.683651</td>
<td>0.559008</td>
<td>0.392726</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 1.5$</td>
<td>0.922065</td>
<td>0.788234</td>
<td>0.665038</td>
<td>0.534544</td>
<td>0.359405</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 2.0$</td>
<td>0.919609</td>
<td>0.782271</td>
<td>0.656370</td>
<td>0.523278</td>
<td>0.344374</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 2.5$</td>
<td>0.918195</td>
<td>0.778860</td>
<td>0.651434</td>
<td>0.516903</td>
<td>0.335968</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3.0$</td>
<td>0.917283</td>
<td>0.776665</td>
<td>0.648269</td>
<td>0.512829</td>
<td>0.330639</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3.5$</td>
<td>0.916648</td>
<td>0.775140</td>
<td>0.646074</td>
<td>0.510011</td>
<td>0.326972</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 4.0$</td>
<td>0.916181</td>
<td>0.774021</td>
<td>0.644465</td>
<td>0.507949</td>
<td>0.324299</td>
<td></td>
</tr>
</tbody>
</table>

이상에서 살펴본 최적 관리 전략의 최적해를 장기 기여위험 안정성관
점(즉, $\sqrt{VAR[AC(\infty)]|\alpha^*, \delta^*, k^*]}$ 로 측정)에서 수치 예를 살펴보면 아
래의 <표 V-3>과 같다. 표에 나타난 바와 같이, 기여위험은 (θ, λ) 모두
에 반비례함을 확인할 수 있다.

<표 V-3> 최적 손익위험 관리에 따른 기여위험 측정값

(단위: $\times AL(i_v^*)$)

<table>
<thead>
<tr>
<th>λ</th>
<th>$\theta = 10%$</th>
<th>$\theta = 30%$</th>
<th>$\theta = 50%$</th>
<th>$\theta = 70%$</th>
<th>$\theta = 90%$</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 1.0$</td>
<td>0.225324</td>
<td>0.199096</td>
<td>0.177348</td>
<td>0.156284</td>
<td>0.131059</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 1.5$</td>
<td>0.152699</td>
<td>0.133686</td>
<td>0.117905</td>
<td>0.102418</td>
<td>0.082987</td>
<td>≈ 0.087</td>
</tr>
<tr>
<td>$\lambda = 2.0$</td>
<td>0.092885</td>
<td>0.080757</td>
<td>0.070689</td>
<td>0.060725</td>
<td>0.047834</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 2.5$</td>
<td>0.077678</td>
<td>0.067426</td>
<td>0.058914</td>
<td>0.050475</td>
<td>0.039485</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3.0$</td>
<td>0.066752</td>
<td>0.057875</td>
<td>0.050506</td>
<td>0.043190</td>
<td>0.033622</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3.5$</td>
<td>0.058521</td>
<td>0.050696</td>
<td>0.044200</td>
<td>0.037746</td>
<td>0.029277</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 4.0$</td>
<td>0.058521</td>
<td>0.050696</td>
<td>0.044200</td>
<td>0.037746</td>
<td>0.029277</td>
<td></td>
</tr>
</tbody>
</table>

주: 예시를 위한 기여위험 측도 = $\sqrt{VAR[AC(\infty)]|\alpha^*, \delta^*, k^*]}$
장기 기여위험 안정성에 상충되는 개념으로 장기 지급능력 제고 관점 (즉, $\sqrt{VAR[UL(\infty) | \alpha^*, i^*, k^*]}$ 로 측정)에서 수치 예를 살펴보면 아래의 <표 V-4>와 같다. 주지하는 바와 같이, 지급능력위험은 θ 에 비례하지만, λ에 반비례함을 확인할 수 있다.

<표 V-4> 최적 손익위험 관리에 따른 지급능력위험 측정값

(단위: $\times AL(i^*)$)

<table>
<thead>
<tr>
<th></th>
<th>$\theta = 10%$</th>
<th>$\theta = 30%$</th>
<th>$\theta = 50%$</th>
<th>$\theta = 70%$</th>
<th>$\theta = 90%$</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 1.0$</td>
<td>0.243007</td>
<td>0.248585</td>
<td>0.259413</td>
<td>0.279574</td>
<td>0.333716</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 1.5$</td>
<td>0.165606</td>
<td>0.169602</td>
<td>0.177291</td>
<td>0.191599</td>
<td>0.230900</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 2.0$</td>
<td>0.125599</td>
<td>0.128698</td>
<td>0.134632</td>
<td>0.145666</td>
<td>0.176204</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 2.5$</td>
<td>0.101161</td>
<td>0.103687</td>
<td>0.108513</td>
<td>0.117478</td>
<td>0.142378</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 3.0$</td>
<td>0.084683</td>
<td>0.086814</td>
<td>0.090878</td>
<td>0.098424</td>
<td>0.119420</td>
<td>0.119420</td>
</tr>
<tr>
<td>$\lambda = 3.5$</td>
<td>0.072822</td>
<td>0.074664</td>
<td>0.078173</td>
<td>0.084685</td>
<td>0.102827</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 4.0$</td>
<td>0.063875</td>
<td>0.065497</td>
<td>0.068584</td>
<td>0.074311</td>
<td>0.090278</td>
<td>0.090278</td>
</tr>
</tbody>
</table>

주: 예시를 위한 지급능력위험 측도 = $\sqrt{VAR[UL(\infty) | \alpha^*, i^*, k^*]}$

이상에서 살펴본 최종적인 결과는 아래의 관리의 성과 지표(control performance index) <표 V-5>로 요약된다. 기여위험은 (θ, λ) 모두에 반비례함을 확인할 수 있다. 이는 기여위험 측정값 <표 V-3>과 동일한 결과로서, 궁극적으로는 이연상각방식이 지급능력위험 관리보다는 기여 위험 관리에 초점을 두고 설계된 보조적립방식임을 가시적으로 보여주고 있다.
다음 장에서 이상의 모형화 과정, 최적 전략 수립 과정 등의 전 과정을 통하여 퇴직연금 운용관리 업무를 수행하는 금융기관이 주요하게 판단하고 컨설팅하여야 할 사항들을 강조하는 것으로 본 연구를 마무리하고자 한다.
결론

본 연구를 통하여 우리는 세 가지 주요 최적 손익 통제위험 관리 전략을 순차적으로 다루었다. 첫째, 연기금 자산 관리 측면에서 투자에 따르는 손익 통제위험을 최소화하는 최적 자산배분 관리전략, 둘째, 연기금 적립 관리 측면에서 적립 과정에서 발생할 것으로 예견되는 적립관련 손익 통제위험을 최소화하는 최적 평가이율 관리 전략, 그리고 앞의 두 전략의 시행착오로 발생하는 지급능력위험 및 기여위험을 최종적으로 최소화하는 최적 상각전략을 제시하였다. 전략 수립 과정에 적용된 계리 모형은 자산배분의 경우 재무경제학에서 보편적으로 인정되고 있는 기대효용극대화 가설을 준용하였다. 평가이율 및 상각율을 결정하는 적립관련 전략은 모두 극한 평균-분산 모형에 기반하고 있다. 이상의 전 과정은 아래의 <그림 VI-1>로 요약 정리된다.

결론적으로 금융기관들이 운용관리 업무를 수행하는 과정에서 상기의 3가지 전략에 대한 총체적 연관성을 깊이 인식하면서 해당 사업장의 내생적 외생적 변수를 고려하여야 할 것이다. 아울러 단기적 연금 컨설팅에 치중하기 보다는 사업주의 위험회피 정도, 자본시장의 장기적 변동성, 노사간의 이해관계 등을 우선적으로 탐색하고 장기적 관점에서 손익 통제위험에 대처하는 전략을 구현하여야 할 것이다. 이러한 전략 수립 메커니즘이 전 금융기관에 확산된다면 퇴직연금 운용관리 업무의 표준화, 더 나아가 효율화가 기기에 전환될 것으로 기대된다. 이는 결국...
퇴직연금시장의 연결목 및 재확산에 기여할 것으로 사료된다.

결론적으로 DB 연기금 운용관리 업무를 수행하는 금융기관별 컨설팅 명성은 “얼마나 안정적이고 집약된 연기금 운용관리(Stable Integrated Pension Management)를 하는가?” 정도에 의해 결정될 것이다.

끝으로, 본 연구는 현재 재정불안이 점증하고 있는 4대 공적연금(국민연금, 공무원연금, 사학연금, 군인연금)에도 우리가 제택한 평균-분산 접근법 및 기본 개념의 수정없이 상당부분 적용될 수 있을 것으로 판단된다.

<그림 VI-1> DB 연기금 관리 요약도
참고문헌

성주호, 「국제기업 연금회계기준의 연금계리적 평가」, 「보험개발연구」, 제13권 제2호, 2002. 9.
_____ 「연기금 지급능력 안정성을 위한 장기 상각 전략 방안」, 「보험개발연구」, 제15권 제1호, 2004. 3.
_____ 「퇴직연금 평가상의 리스크 계량화 지수에 관한 연구」, 「보험학회지」, 제71집, 2005. 8.
_____ 「예측급여적립방식에 의한 근로자별연금의 연금부채 평가」, 「보험개발연구」, 제17권 제3호, 2006. 12.
______ 외 4인, 『연금계리전문과정』, 한국금융연수원, 2006.
이봉주・류건식, 『퇴직연금론』, 박영사, 2006
이필상, 『재무관리』, 제4판, 박영사, 1999.

보험개발원(KIDI) 발간물 안내

■ 연구보고서

2002-1 국내외 보험사가 관리 실태 분석 / 안철경, 김경환, 조재현 2002. 3
2002-2 기업연금시장 활성화와 보험회사 대응전략 / 박홍민, 이경희 2002. 3
2002-3 보험회사 리스크 감독 및 관리방안 연구 / 류건식, 정석영, 이정환 2002. 5
2002-4 생명보험회사의 시장진위별 마케팅 경쟁 / 신문식, 김경환 2002. 5
2002-5 생명보험사 RBC제도에 관한 연구 / 류건식, 전일영, 신동현 2002. 10
2002-6 생명보험회사의 고객유지전략 / 신문식, 장동식 2002. 10
2002-7 방카슈랑스 환경에서의 보험회사 대응전략 / 정세창, 박홍민, 이정환 2002. 12
2002-8 생명보험사 보험리스크 평가에 관한 연구 / 류건식, 신동현, 배윤희 2002. 12
2003-1 민영건강보험의 언더라이팅 선진화 방안 / 오영수, 이경희 2003. 3
2003-2 보험회사의 실비산업 진출방안 / 박홍민, 권순일, 이한덕 2003. 3
2003-3 보험회사 사이버마케팅의 활용전망 / 신문식, 장동식 2003. 3
2003-4 생명보험사 RAS체제에 관한 연구 / 류건식, 김해식, 정석영 2003. 7
2003-5 보험소비자를 위한 보험교육방안 / 이기형, 조재현 2003. 11
2003-6 보험설계사 직무의 개편방안 / 신문식, 이경희, 이정환 2003. 12
2004-1 부유층 시장에 대한 보험회사의 자산관리사업 운영방안 / 신문식, 이경희 2004. 3
2004-2 퇴직연금 규제감독체계에 관한 연구 / 류건식, 이태열 2004. 7
2004-3 보험회사의 퇴직연금 리스크 관리전략 / 류건식, 김세환 2004. 7
2004-4 퇴직연금 활성화를 위한 세계체계 연구 / 임병인, 김세환 2004. 9
2004-5 신용리스크 전가시장과 보험회사 참여에 대한 연구 / 주민정, 조재현 2004. 10
<table>
<thead>
<tr>
<th>년도-번호</th>
<th>제목 및 저자</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-6</td>
<td>보험회사의 퇴직연금 마케팅 전략 / 류건식, 신문식, 정석영 2004.12</td>
</tr>
<tr>
<td>2004-7</td>
<td>예금보험제도의 개선방안 / 이순재 2005.1</td>
</tr>
<tr>
<td>2005-3</td>
<td>손해보험사 RBC제도에 관한 연구 / 이기형, 나우승, 김해식 2005.5</td>
</tr>
<tr>
<td>2005-4</td>
<td>저금리 추이에 따른 이차역마진 현상과 대응방안 / 김석영, 나우승 2005.9</td>
</tr>
<tr>
<td>2005-5</td>
<td>예금보험제도의 국제적 정합성 평가와 개선방안 / 류건식, 김해식 2005.10</td>
</tr>
<tr>
<td>2005-6</td>
<td>모집조직 다변화에 따른 보험모집제도 개선방안 / 신문식, 조재현, 박정희 2005.11</td>
</tr>
<tr>
<td>2005-7</td>
<td>퇴직연금제도 재정평가체계에 관한 연구 / 류건식, 이상우 2005.11</td>
</tr>
<tr>
<td>2005-8</td>
<td>민영건강보험의 의료비 저금·심사제도 개선방안 / 조용운, 김세환 2005.11</td>
</tr>
<tr>
<td>2006-1</td>
<td>보험회사의 은행업 진출 방안 / 류근옥 2006.1</td>
</tr>
<tr>
<td>2006-2</td>
<td>보험시장의 퇴출 분석과 규제개선방향 / 김현수 2006.3</td>
</tr>
<tr>
<td>2006-3</td>
<td>보험지주회사제도 도입 및 활용방안 / 안철경, 이상우 2006.8</td>
</tr>
<tr>
<td>2006-4</td>
<td>보험회사의 리스크공시체계에 관한 연구 / 류건식, 이경희 2006.12</td>
</tr>
<tr>
<td>2007-1</td>
<td>국제보험회계기준도입에 따른 영향 및 대응방안 / 이상회, 김동건 2007.1</td>
</tr>
<tr>
<td>2007-2</td>
<td>민영건강보험요율 결정요인 분석 / 조용운, 기승도 2007.3</td>
</tr>
<tr>
<td>연구조사자료</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2002-1 보험니드에 관한 소비자 설문조사 / 보험연구소 2002.3</td>
<td></td>
</tr>
<tr>
<td>2002-2 국내 유사보험 감독 및 사업현황 / 김진선, 안철경, 권순일 2002.9</td>
<td></td>
</tr>
<tr>
<td>2003-1 2003년 보험소비자 설문조사 / 동향분석팀 2003.3</td>
<td></td>
</tr>
<tr>
<td>2003-2 보험회사의 경영리스크 관리방안 / 천일영, 주민정, 신동현 2003.3</td>
<td></td>
</tr>
<tr>
<td>2004-1 2004년도 보험소비자 설문조사 / 동향분석팀 2004.3</td>
<td></td>
</tr>
<tr>
<td>2005-1 금리 시나리오 생명모델 연구 / 김석영 2005.3</td>
<td></td>
</tr>
<tr>
<td>2006-1 2006년도 보험소비자 설문조사 / 김세환, 조재현, 박정희 2006.3</td>
<td></td>
</tr>
<tr>
<td>2006-2 주요국 방카슈랑스의 운용사례 및 시사점 / 류건식, 김석영, 이성우, 박정희, 김동권 2006.7</td>
<td></td>
</tr>
<tr>
<td>2007-1 보험회사 경영성과 분석모형에 관한 비교연구 / 류건식, 장아규, 이경희, 김동권 2007.3</td>
<td></td>
</tr>
<tr>
<td>2007-2 보험회사 브랜드 전략의 필요성 및 시사점 / 최영목, 박정희 2007.3</td>
<td></td>
</tr>
<tr>
<td>2007-3 2007 보험소비자 설문조사 / 안철경, 기승도, 오승철 2007.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>정책연구자료</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-1 2003년도 보험산업 전망과 과제 / 동향분석팀 2002.11</td>
</tr>
<tr>
<td>2003-1 주요국의 방카슈랑스 규제 / 안철경, 신문식, 이성우, 조재현 2003.7</td>
</tr>
<tr>
<td>2004-1 2005년도 보험산업 전망과 과제 / 동향분석팀 2004.11</td>
</tr>
<tr>
<td>2005-1 영국 통합금융업법상 보험업의 일반성과 특수성 / 김지근 2005.2</td>
</tr>
<tr>
<td>2006-2 의료리스크 관리의 선진화를 위한 의료배상보험에 대한 연구 / 차일권, 오승철 2006.12</td>
</tr>
<tr>
<td>2007-1 퇴직연금 수탁사리스크 감독방안 / 류건식, 이경희 2007.2</td>
</tr>
<tr>
<td>2007-2 보험상품의 불완전판매 개선방안 / 차일권, 이성우 2007.3</td>
</tr>
</tbody>
</table>
연구논문집

<table>
<thead>
<tr>
<th>호</th>
<th>제목</th>
<th>저자</th>
<th>발간년월</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>보험산업의 규제와 감독제도의 미래</td>
<td>Harold D. Skipper, Robert W. Klein, Martin F. Grace</td>
<td>1997.6</td>
</tr>
<tr>
<td>2</td>
<td>세계보험시장의 변화와 대응방안</td>
<td>D. Farny, 전천관, J. E. Johnson, 조해균</td>
<td>1998.3</td>
</tr>
<tr>
<td>3</td>
<td>제1회 전국대학생 보험현상논문집</td>
<td></td>
<td>1998.11</td>
</tr>
<tr>
<td>4</td>
<td>제2회 전국대학생 보험현상논문집</td>
<td></td>
<td>1999.12</td>
</tr>
</tbody>
</table>

영문발간물

<table>
<thead>
<tr>
<th>호</th>
<th>제목</th>
<th>저자</th>
<th>발간년월</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Environment Changes in the Korean Insurance Industry in Recent Years : Institutional Improvement, Deregulation and Liberalization</td>
<td>Hokyung Kim, Sango Park</td>
<td>1995.5</td>
</tr>
<tr>
<td>2</td>
<td>Korean Insurance Industry 2000</td>
<td>Insurance Research Center</td>
<td>2001.4</td>
</tr>
<tr>
<td>3</td>
<td>Korean Insurance Industry 2001</td>
<td>Insurance Research Center</td>
<td>2002.2</td>
</tr>
<tr>
<td>4</td>
<td>Korean Insurance Industry 2002</td>
<td>Insurance Research Center</td>
<td>2003.2</td>
</tr>
<tr>
<td>5</td>
<td>Korean Insurance Industry 2003</td>
<td>Insurance Research Center</td>
<td>2004.2</td>
</tr>
<tr>
<td>6</td>
<td>Korean Insurance Industry 2004</td>
<td>Insurance Research Center</td>
<td>2005.2</td>
</tr>
<tr>
<td>7</td>
<td>Korean Insurance Industry 2005</td>
<td>Insurance Research Center</td>
<td>2005.8</td>
</tr>
<tr>
<td>8</td>
<td>Korean Insurance Industry 2006</td>
<td>Insurance Research Center</td>
<td>2006.10</td>
</tr>
<tr>
<td>호수</td>
<td>제목 및 저자</td>
<td>연도</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1호</td>
<td>일산생명 과산과 시사점 / 이기형</td>
<td>1997.5</td>
<td></td>
</tr>
<tr>
<td>2호</td>
<td>OECD 회원국의 기업연금제도 / 정재욱, 정영철</td>
<td>1997.10</td>
<td></td>
</tr>
<tr>
<td>3호</td>
<td>손해보험의 금융재보험 동향 / 이기형, 김평원</td>
<td>1997.11</td>
<td></td>
</tr>
<tr>
<td>4호</td>
<td>금융위기에 대한 대책과 보험산업 / 김호경</td>
<td>1997.12</td>
<td></td>
</tr>
<tr>
<td>5호</td>
<td>멕시코 보험산업의 IMF 대응사례와 시사점 / 정재욱</td>
<td>1998.3</td>
<td></td>
</tr>
<tr>
<td>6호</td>
<td>주요국 기업연금보험 개요 및 세제 / 양성문</td>
<td>1998.3</td>
<td></td>
</tr>
<tr>
<td>7호</td>
<td>일본의 보험개혁과 보험회사의 대응 / 이기형, 장기종</td>
<td>1998.5</td>
<td></td>
</tr>
<tr>
<td>8호</td>
<td>구조조정에 따른 보험산업의 대응전략 : 상품, 마케팅, 자산운용, 재무 건정성을 중심으로 / 노병윤, 안철경, 이승철</td>
<td>1999.2</td>
<td></td>
</tr>
<tr>
<td>9호</td>
<td>보험산업에서의 정보기술(IT)의 활용 : 손해보험 중심으로 / 최용석</td>
<td>1999.3</td>
<td></td>
</tr>
<tr>
<td>10호</td>
<td>자동차보험 가격자유화의 영향과 대책 / 박중영</td>
<td>1999.3</td>
<td></td>
</tr>
<tr>
<td>11호</td>
<td>IMF파제 이후 보험산업의 환경변화와 전망 / 양성문, 김해식</td>
<td>1999.3</td>
<td></td>
</tr>
<tr>
<td>12호</td>
<td>최근의 환경변화와 생명보험회사의 대응 / 강중철, 문진영</td>
<td>1999.10</td>
<td></td>
</tr>
<tr>
<td>13호</td>
<td>21세기 보험산업 환경변화와 보험회사의 전략적 대응방안 / 오영수, 최용석, 이승철</td>
<td>1999.12</td>
<td></td>
</tr>
<tr>
<td>14호</td>
<td>중국의 WTO 가입과 보험시장 개방 / 정회남</td>
<td>2002.4</td>
<td></td>
</tr>
<tr>
<td>15호</td>
<td>주 5일 근무제 도입에 따른 보험산업의 영향과 대응 / 동항분석팀</td>
<td>2002.9</td>
<td></td>
</tr>
<tr>
<td>16호</td>
<td>2010년 보험산업 트렌드 분석 및 시사점 / 조혜원</td>
<td>2003.5</td>
<td></td>
</tr>
<tr>
<td>17호</td>
<td>유럽보험회사 과산사례의 리스크 분석 및 감독방안 / 신동현</td>
<td>2003.5</td>
<td></td>
</tr>
<tr>
<td>18호</td>
<td>미국 배상책임보험의 최근 현황과 시사점 / 이기형, 조재현</td>
<td>2003.8</td>
<td></td>
</tr>
<tr>
<td>19호</td>
<td>공정가치회계가 보험사 경영에 미치는 영향 -보험사 CEO 대상 설문조사 결과 / 이기형, 김해식</td>
<td>2004.10</td>
<td></td>
</tr>
<tr>
<td>20호</td>
<td>선진 보험사 재무공시 특징 및 트렌드(유럽 및 캐나다를 중심으로) / 장이규</td>
<td>2006.11</td>
<td></td>
</tr>
<tr>
<td>21호</td>
<td>지급여력 평가모형 트렌드 및 국제비교 / 류건석, 장이규</td>
<td>2006.11</td>
<td></td>
</tr>
<tr>
<td>22호</td>
<td>선진보험그룹 글로벌화 추세와 시사점 / 안철경, 오승철</td>
<td>2006.12</td>
<td></td>
</tr>
</tbody>
</table>
CEO Report

2006-1 생보사 개인연금보험 생존리스크 분석 및 시사점 / 생명보험본부 2006. 1
2006-2 보험회사의 퇴직연금 운용전략 / 보험연구소 2006.1
2006-3 생보사 FY2006 손의 전망 및 분석 / 생명보험본부 2006.2
2006-4 의무보험제도의 현황과 과제 / 손해보험본부 2006.2
2006-5 자동차보험 지급준비금 분석 및 과제 / 자동차보험본부 2006.3
2006-6 보험사기 관리실태와 대응전략 / 정책연구본부 2006.3
2006-7 자동차보험 의료비 지급 적정화 방안 / 자동차보험본부 2006.3
2006-8 자동차보험시장 동향 및 전망 / 자동차보험본부 2006.4
2006-9 난씨위험에 대한 손해보험회사의 역할 강화 방안 / 손해보험본부 2006.4
2006-10 장기손해보험 상품운용전략 -손익관리를 중심으로- / 손해보험본부 2006.5
2006-11 자동차 중고부품 활성화 방안 / 자동차기술평가조 2006.5
2006-12 장기간보험시장의 활성화를 위한 상품개발 방향 / 보험연구소 2006.6
2006-13 보험산업 소득자금결제시스템 참여방안 / 보험연구소 2006.7
2006-14 생명보험 가입형태별 위험수준 분석 / 리스크·통계관리실 2006.8
2006-15 「민영의료보험법」 세정(안)에 대한 검토 / 보험연구소 2006.9
2006-16 모기지보험의 시장규모 및 운영방안 / 손해보험본부 2006.9
2006-17 생명보험 상품별 가입 현황 분석 / 생명보험본부 2006.10
2006-18 자동차보험 온라인시장의 성장 및 시사점 / 자동차보험본부 2006.10

정기간행물

■ 월간

○ 보험통계월보

■ 계간

○ 보험동향
○ 보험개발연구

■ 연간

○ 보험통계연감
도서회원 가입안내

<table>
<thead>
<tr>
<th>내용</th>
<th>법인회원</th>
<th>특별회원</th>
<th>개인회원</th>
<th>연속간행물 구독회원</th>
</tr>
</thead>
<tbody>
<tr>
<td>연회비</td>
<td>₩ 300,000원</td>
<td>₩ 150,000원</td>
<td>₩ 150,000원</td>
<td>간행물별로 다름</td>
</tr>
<tr>
<td>제공자료</td>
<td>연구조사보고서, 조사연구자료(510회/년), 정책연구자료(35회/년), 기타 보고서</td>
<td>연구조사보고서, 조사연구자료(510회/년), 정책연구자료(35회/년), 기타 보고서</td>
<td>연속간행물, 보험개발연구(3~4회), 보험통계월보(계간)</td>
<td>보험개발연구 (연간 3회 ~ 4회, ₩ 30,000), 보험통계월보 (월간, ₩ 50,000), 보험동향 (계간, ₩ 20,000)</td>
</tr>
<tr>
<td>제본원 주최 각종 세미나 및 공청회 자료</td>
<td>연속간행물, 보험개발연구(3~4회), 보험통계월보, 영문발간자료</td>
<td>연속간행물, 보험개발연구(3~4회), 보험통행(계간)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※특별회원 가입대상: 도서관 및 독서진흥법에 의하여 설립된 공공도서관 및 대학 도서관

가입문의
보험개발원 도서회원 담당
전화: 368-4230, 4407 팩스: 368-4099

회비납입방법
- 무통장입금: 국민은행 (067-25-0014-382) / 한미은행 (110-55016-257) 예금주: 보험개발원
- 지로번호: 6937009

가입절차
보험개발원 홈페이지(www.kidi.or.kr)에서 도서회원가입신청서를 작성, 등록 후 회비입금을 하시면 확인 후 1년간 회원자격이 주어집니다.

자료구입처
서울: 보험개발원 자료실, 교보문고, 종로서적, 영풍문고, 음지서적, 서울문고, 세종문고
부산: 영광서적
저자약력

성주호

런던시티유니버시티 금융보험학 박사(연금전공)
전 보험개발원 보험연구소 부연구위원
전 홍익대학교 상경대학 금융보험학과 교수
현 경희대학교 경영학부 재무/금융 교수, 보험계리사
(e-mail : jhsung@khu.ac.kr)

연구보고서 2007-3

퇴직연금 손익위험관리전략에 관한 연구
- 평균-분산 최적화 접근법 -

발행일 2007년 3월 일
발행인 김 창 수
편 집인 오 영 수
발행처 보험 개 발 원
서울특별시 영등포구 여의도동 35-4
대표전화 (02) 368-4000

ISBN 978-89-5710-048-6 정가 10,000원